EN FR
EN FR


Section: New Software and Platforms

SIMSTORS

Simulator for stochastic regulated systems

Keywords: Simulation - Public transport - Stochastic models - Distributed systems

Functional Description: SIMSTORS is a software for the simulation of stochastic concurrent timed systems. The heart of the software is a variant of stochastic and timed Petri nets, whose execution is controlled by a regulation policy (a controller), or a predetermined theoretical schedule. The role of the regulation policy is to control the system to realize objectives or a schedule when it exists with the best possible precision. SIMSTORS is well adapted to represent systems with randomness, parallelism, tasks scheduling, and resources. From 2015 to 2018, it was used for the P22 collaboration with Asltom Transport, to model metro traffic and evaluate performance of regulation solutions. It is now (2019) at the heart of a collaboration on multi-modal networks with Alstom transport Madrid. This software allows for step by step simulation, but also for efficient performance analysis of systems such as production cells or train systems. The initial implementation was released in 2015, and the software is protected by the APP.

Since then, SIMSTORS has been extended along two main axes: on one hand, SIMSTORS models were extended to handle situations where shared resources can be occupied by more than one object ( this is of paramount importance to represent conveyors, roads occupied by cars, or train tracks with smoothed scheduling allowing shared sections among trains) with priorities, constraint on their ordering and individual characteristics. This allows for instance to model vehicles with different speeds on a road, while handling safety distance constraints. On the other hand, SIMSTORS models were extended to allow control of stochastic nets based on decision rules that follow optimization schemes. In 2019, it was extended to include planning-based regulation techniques during a collaboration with Roma 3 University.

Release Functional Description: modeling of continuous vehicles movements