EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journal

  • 1H. Biermé, C. Lacaux, H.-P. Scheffler.

    Multi-operator Scaling Random Fields, in: Stochastic Processes and their Applications, 2011, vol. 121, p. 2642-2677.

    http://hal.inria.fr/hal-00551707/en
  • 2O. Collignon, J.-M. Monnez, P. Vallois, F. Codreanu, J.-M. Renaudin, G. Kanny, M. Brulliard, B. Bihain, S. Jacquenet, D.-A. Moneret-Vautrin.

    Discriminant analyses of peanut allergy severity scores, in: Journal of Applied Statistics, 2011, vol. 38, no 9, p. 1783-1799. [ DOI : 10.1080/02664763.2010.529878 ]

    http://hal.archives-ouvertes.fr/hal-00643787/en/
  • 3R. Keinj, T. Bastogne, P. Vallois.

    Multinomial model-based formulations of TCP and NTCP for radiotherapy treatment planning, in: Journal of Theoretical Biology, June 2011, vol. 279, no 1, p. 55-62. [ DOI : 10.1016/j.jtbi.2011.03.025 ]

    http://hal.inria.fr/hal-00588935/en
  • 4D. Nualart, S. Tindel.

    A construction of the rough path above fractional Brownian motion using Volterra's representation, in: Annals of Probability, 2011, p. Vol. 39, no. 3, 1061-1096, 25 pages.

    http://hal.inria.fr/hal-00414075/en
  • 5S. Tindel, J. Unterberger.

    The rough path associated to the multidimensional analytic fbm with any Hurst parameter, in: Collectanea Mtematica, 2011, p. Vol 62, no. 2, 197-223, 32 pages..

    http://hal.inria.fr/hal-00327355/en
  • 6P. Vallois, J.-M. Monnez.

    A novel immunoassay using recombinant allergens simplifies peanut allergy diagnosis, in: International Archives of Allergy and Immunology, 2011, vol. 154, p. 216-226.

    http://hal.inria.fr/hal-00644649/en
  • 7P. Vallois.

    A characterization of Kummer, gamma and beta distributions via Matsumoto-Yor property, in: Electronic Journal of Probability, 2011, to appear.

    http://hal.inria.fr/hal-00644653/en

International Conferences with Proceedings

  • 8T. Bastogne, L. Tirand, J. Gravier, D. Bechet, V. Morosini, M. Pernot, C. Frochot, A. Richard, F. Guillemin, M. Barberi-Heyob.

    Contributions of experiment designs in photodynamic therapy: photosensitizer design, treatment analysis and optimization., in: 13th World Congress of the International Photodynamic Association, IPA 2011, Innsbruck, Austria, May 2011, CDROM p, Abstract published in Photodiagnosis and Photodynamic Therapy, 8(2):137, 2011.

    http://hal.inria.fr/hal-00597950/en

Internal Reports

Other Publications

References in notes
  • 25J. M. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M. Taqqu.

    Semi-parametric estimation of the long-range dependence parameter: a survey, in: Theory and applications of long-range dependence, Birkhauser Boston, 2003, p. 557?-577.
  • 26T. Bastogne, S. Mézières-Wantz, N. Ramdani, P. Vallois, M. Barberi-Heyob.

    Identification of pharmacokinetics models in the presence of timing noise, in: Eur. J. Control, 2008, vol. 14, no 2, p. 149–157.

    http://dx.doi.org/10.3166/ejc.14.149-157
  • 27A. Benassi, S. Jaffard, D. Roux.

    Elliptic Gaussian random processes, in: Rev. Mat. Iberoamericana, 1997, vol. 13, no 1, p. 19–90.
  • 28J. O. Berger.

    Statistical decision theory and Bayesian analysis, Springer Series in Statistics, Springer-Verlag, New York, 1993, Corrected reprint of the second (1985) edition.
  • 29H. Biermé, Claude-Laurent. Benhamou, F. Richard.

    Parametric estimation for Gaussian operator scaling random fields and anisotropy analysis of bone radiographs texture, in: Proc. MICCAI 12th Int. Conference, London, 2009.
  • 30H. Biermé, C. Lacaux.

    Hölder regularity for operator scaling stable random fields, in: Stochastic Process. Appl., 2009, vol. 119, no 7, p. 2222–2248.

    http://dx.doi.org/10.1016/j.spa.2008.10.008
  • 31H. Biermé, C. Lacaux, H.-P. Scheffler.

    Multi-operator Scaling Random Fields, in: Stochastic Processes and their Applications, 2011, vol. 121, no 11, p. 2642-2677, MAP5 2011-01. [ DOI : 10.1016/j.spa.2011.07.002 ]

    http://hal.archives-ouvertes.fr/hal-00551707/en/
  • 32H. Biermé, C. Lacaux, Y. Xiao.

    Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields, in: Bull. Lond. Math. Soc., 2009, vol. 41, no 2, p. 253–273.

    http://dx.doi.org/10.1112/blms/bdn122
  • 33B. Brunet-Imbault, G. Lemineur, C. Chappard, R. Harba, Claude-Laurent. Benhamou.

    A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform, in: BMC Med. Imaging, 2005, vol. 5, no 1, 4 p.
  • 34M. Carletti.

    Mean-square stability of a stochastic model for bacteriophage infection with time delays, in: Math. Biosci., 2007, vol. 210, no 2, p. 395–414.

    http://dx.doi.org/10.1016/j.mbs.2007.05.009
  • 35J. F. Coeurjolly.

    Simulation and identification of the fractional brownian motion: a bibliographical and comparative study., in: Journal of Statistical Software, 2000, vol. 5, p. 1–53.
  • 36S. Cohen, C. Lacaux, M. Ledoux.

    A general framework for simulation of fractional fields, in: Stochastic Process. Appl., 2008, vol. 118, no 9, p. 1489–1517.

    http://dx.doi.org/10.1016/j.spa.2007.09.008
  • 37S. Cohen, R. Marty.

    Invariance principle, multifractional Gaussian processes and long-range dependence, in: Ann. Inst. Henri Poincaré Probab. Stat., 2008, vol. 44, no 3, p. 475–489.
  • 38A. Crudu, A. Debussche, O. Radulescu.

    Hybrid stochastic simplifications for multiscale gene networks, in: BMC Systems Biology, 2009, vol. 3, 89 p.

    http://hal.inria.fr/inria-00431227/en/
  • 39R. Dahlhaus.

    Efficient parameter estimation for self-similar processes, in: Ann. Statist., 1989, vol. 17, no 4, p. 1749–1766.
  • 40A. Deya, S. Tindel.

    Rough Volterra equations. I. The algebraic integration setting, in: Stoch. Dyn., 2009, vol. 9, no 3, p. 437–477.

    http://dx.doi.org/10.1142/S0219493709002737
  • 41S. Dobre, T. Bastogne, M. Barberi-Heyob, A. Richard.

    Practical identifiability of photophysical parameters in photodynamic therapy, in: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'2007, Lyon, France, August 2007, CDROM.

    http://hal.archives-ouvertes.fr/hal-00167475/en/
  • 42G. B. Durham, A. R. Gallant.

    Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes, in: J. Bus. Econom. Statist., 2002, vol. 20, no 3, p. 297–338, With comments and a reply by the authors.

    http://dx.doi.org/10.1198/073500102288618397
  • 43S. Ferrigno, G. Ducharme.

    Un test d'adéquation global pour la fonction de répartition conditionnelle, in: C. R. Math. Acad. Sci. Paris, 2005, vol. 341, no 5, p. 313–316.

    http://dx.doi.org/10.1016/j.crma.2005.07.003
  • 44S. Ferrigno, G. Ducharme.

    Un choix de fenêtre optimal en estimation polynomiale locale de la fonction de répartition conditionnelle, in: C. R. Math. Acad. Sci. Paris, 2008, vol. 346, no 1-2, p. 83–86.

    http://dx.doi.org/10.1016/j.crma.2007.11.026
  • 45M. Gubinelli, S. Tindel.

    Rough evolution equations, in: Ann. Probab., 2010, vol. 38, no 1, p. 1–75.

    http://dx.doi.org/10.1214/08-AOP437
  • 46S. C. Kou.

    Stochastic Networks in Nanoscale Biophysics, in: Journal of the American Statistical Association, 2008, vol. 103, no 483, p. 961-975.

    http://pubs.amstat.org/doi/abs/10.1198/016214507000001021
  • 47Y. A. Kutoyants.

    Statistical inference for ergodic diffusion processes, Springer Series in Statistics, Springer-Verlag London Ltd., London, 2004.
  • 48C. Lacaux.

    Real Harmonizable Multifractional Lévy Motions, in: Ann. Inst. Poincaré., 2004, vol. 40, no 3, p. 259–277.
  • 49C. Lacaux.

    Series representation and simulation of multifractional Lévy motions, in: Adv. in Appl. Probab., 2004, vol. 36, no 1, p. 171–197.

    http://dx.doi.org/10.1239/aap/1077134469
  • 50C. Lacaux, J.-M. Loubes.

    Hurst exponent estimation of fractional Lévy motion, in: ALEA Lat. Am. J. Probab. Math. Stat., 2007, vol. 3, p. 143–164.
  • 51C. Lacaux, R. Marty.

    From invariance principles to a class of multifractional fields related to fractional sheets, 2011, MAP5 2011-08.

    http://hal.archives-ouvertes.fr/hal-00592188/en/
  • 52L. Lebart.

    On the Benzecri's method for computing eigenvectors by stochastic approximation (the case of binary data), in: Compstat 1974 (Proc. Sympos. Computational Statist., Univ. Vienna, Vienna, 1974), Vienna, Physica Verlag, Vienna, 1974, p. 202–211.
  • 53O. Lieberman, R. Rosemarin, J. Rousseau.

    Asymptotic Theory for Maximum Likelihood Estimation of the Memory Parameter in Stationary Gaussian Processes, in: Econometric Theory, 2011, p. 1–14, to appear. [ DOI : 10.1017/S0266466611000399 ]

    http://www.esaim-cocv.org/action/displayAbstract?fromPage=online&aid=8376039&fulltextType=RA&fileId=S0266466611000399
  • 54H. Liero.

    Testing homoscedasticity in nonparametric regression, in: Journal of Nonparametric Statistics, 2003, vol. 15, no 1, p. 31-51.

    http://www.tandfonline.com/doi/abs/10.1080/10485250306038
  • 55T. Lyons, Z. Qian.

    System control and rough paths, Oxford mathematical monographs, Clarendon Press, 2002.

    http://books.google.com/books?id=H9fRQNIngZYC
  • 56J. MacQueen.

    Some methods for classification and analysis of multivariate observations., 1967, Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, 1, 281-297 (1967)..
  • 57J.-M. Monnez.

    Approximation stochastique en analyse factorielle multiple, in: Ann. I.S.U.P., 2006, vol. 50, no 3, p. 27–45.
  • 58J.-M. Monnez.

    Stochastic approximation of the factors of a generalized canonical correlation analysis, in: Statist. Probab. Lett., 2008, vol. 78, no 14, p. 2210–2216.

    http://dx.doi.org/10.1016/j.spl.2008.01.088
  • 59J.-M. Monnez.

    Convergence d'un processus d'approximation stochastique en analyse factorielle, in: Publ. Inst. Statist. Univ. Paris, 1994, vol. 38, no 1, p. 37–55.
  • 60D. Márquez-Carreras, C. Rovira, S. Tindel.

    Asymptotic behavior of the magnetization for the perceptron model, in: Ann. Inst. H. Poincaré Probab. Statist., 2006, vol. 42, no 3, p. 327–342.

    http://dx.doi.org/10.1016/j.anihpb.2005.04.005
  • 61A. Neuenkirch, I. Nourdin, A. Rößler, S. Tindel.

    Trees and asymptotic expansions for fractional stochastic differential equations, in: Ann. Inst. Henri Poincaré Probab. Stat., 2009, vol. 45, no 1, p. 157–174.

    http://dx.doi.org/10.1214/07-AIHP159
  • 62F. Russo, P. Vallois.

    Elements of stochastic calculus via regularization, in: Séminaire de Probabilités XL, Berlin, Lecture Notes in Math., Springer, Berlin, 2007, vol. 1899, p. 147–185.

    http://dx.doi.org/10.1007/978-3-540-71189-6_7
  • 63S. Tindel.

    Quenched large deviation principle for the overlap of a p-spins system, in: J. Statist. Phys., 2003, vol. 110, no 1-2, p. 51–72.

    http://dx.doi.org/10.1023/A:1021062510565
  • 64C. A. Tudor, F. G. Viens.

    Statistical aspects of the fractional stochastic calculus, in: Ann. Statist., 2007, vol. 35, no 3, p. 1183–1212.

    http://dx.doi.org/10.1214/009053606000001541
  • 65É. Walter, L. Pronzato.

    Identification of parametric models, Communications and Control Engineering Series, Springer-Verlag, Berlin, 1997, From experimental data, Translated from the 1994 French original and revised by the authors, with the help of John Norton.
  • 66A. W. van der Vaart.

    Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 1998, vol. 3.