Section: Scientific Foundations
Detection
Our approach to on-board detection is based on the so-called asymptotic statistical local approach, which we have extended and adapted [5] , [4] , [2] . It is worth noticing that these investigations of ours have been initially motivated by a vibration monitoring application example. It should also be stressed that, as opposite to many monitoring approaches, our method does not require repeated identification for each newly collected data sample.
For achieving the early detection of small deviations with respect to the normal behavior,
our approach generates, on the basis of the reference parameter vector
-
The early detection of a slight mismatch between the model and the data;
-
A preliminary diagnostics and localization of the deviation(s);
-
The tradeoff between the magnitude of the detected changes and the uncertainty resulting from the estimation error in the reference model and the measurement noise level.
These indicators are computationally cheap, and thus can be embedded. This is of particular interest in some applications, such as flutter monitoring, as explained in module 4.4 .
As in most fault detection approaches, the key issue is to design a residual, which is ideally close to zero under normal operation, and has low sensitivity to noises and other nuisance perturbations, but high sensitivity to small deviations, before they develop into events to be avoided (damages, faults, ...). The originality of our approach is to :
-
Design the residual basically as a parameter estimating function,
-
Evaluate the residual thanks to a kind of central limit theorem, stating that the residual is asymptotically Gaussian and reflects the presence of a deviation in the parameter vector through a change in its own mean vector, which switches from zero in the reference situation to a non-zero value.
This is actually a strong result, which transforms any detection problem concerning a parameterized stochastic process into the problem of monitoring the mean of a Gaussian vector.
The behavior of the monitored system is again assumed to be described by
a parametric model
Given a new
where
If the matrix
where the asymptotic covariance matrix
where
With this approach, it is possible to decide, with a quantifiable error level,
if a residual value is significantly different from zero, for assessing whether
a fault/damage has occurred.
It should be stressed that the residual and the sensitivity and covariance
matrices