EN FR
Homepage Inria website


Bibliography

Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, p. 541–560.

    http://dx.doi.org/10.1111/j.1365-246X.2009.04088.x
  • 2M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux, S. Piperno.

    Dynamic non-planar crack rupture by a finite volume method, in: Geophys. J. Int., 2007, vol. 171, p. 271-285.

    http://dx.doi.org/10.1111/j.1365-246X.2006.03500.x
  • 3M. Bernacki, L. Fezoui, S. Lanteri, S. Piperno.

    Parallel unstructured mesh solvers for heterogeneous wave propagation problems, in: Appl. Math. Model., 2006, vol. 30, no 8, p. 744–763.

    http://dx.doi.org/10.1016/j.apm.2005.06.015
  • 4A. Catella, V. Dolean, S. Lanteri.

    An implicit discontinuous Galerkin time-domain method for two-dimensional electromagnetic wave propagation, in: COMPEL, 2010, vol. 29, no 3, p. 602–625.

    http://dx.doi.org/10.1108/03321641011028215
  • 5S. Delcourte, L. Fezoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, p. 70–89.

    http://dx.doi.org/10.1051/proc/2009020
  • 6V. Dolean, H. Fahs, L. Fezoui, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, p. 512–526.

    http://dx.doi.org/10.1016/j.jcp.2009.09.038
  • 7V. Dolean, H. Fol, S. Lanteri, R. Perrussel.

    Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, in: J. Comp. Appl. Math., 2008, vol. 218, no 2, p. 435-445.

    http://dx.doi.org/10.1016/j.cam.2007.05.026
  • 8V. Dolean, M. Gander, L. Gerardo-Giorda.

    Optimized Schwarz methods for Maxwell equations, in: SIAM J. Scient. Comp., 2009, vol. 31, no 3, p. 2193–2213.

    http://dx.doi.org/10.1137/080728536
  • 9V. Dolean, S. Lanteri, R. Perrussel.

    A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods, in: J. Comput. Phys., 2007, vol. 227, no 3, p. 2044–2072.

    http://dx.doi.org/10.1016/j.jcp.2007.10.004
  • 10V. Dolean, S. Lanteri, R. Perrussel.

    Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method, in: IEEE. Trans. Magn., 2008, vol. 44, no 6, p. 954–957.

    http://dx.doi.org/10.1109/TMAG.2008.915830
  • 11V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.

    An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, p. 941–962.

    http://dx.doi.org/10.1111/j.1365-246X.2010.04764.x
  • 12H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, p. 193–216.
  • 13H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, p. 275–300.
  • 14L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, p. 1149–1176.

    http://dx.doi.org/DOI:10.1051/m2an:2005049
  • 15S. Piperno, M. Remaki, L. Fezoui.

    A nondiffusive finite volume scheme for the three-dimensional Maxwell's equations on unstructured meshes, in: SIAM J. Num. Anal., 2002, vol. 39, no 6, p. 2089–2108.

    http://dx.doi.org/10.1137/S0036142901387683
Publications of the year

Articles in International Peer-Reviewed Journal

  • 16M. E. Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2011, to appear.

    http://dx.doi.org/10.1016/j.amc.2011.03.140
  • 17M. E. Bouajaji, S. Lanteri, M. Yedlin.

    Discontinuous Galerkin frequency domain forward modelling for the inversion of electric permittivity in the 2D case, in: Geophys. Prosp., 2011, vol. 59, no 5, p. 920–933.

    http://dx.doi.org/10.1111/j.1365-2478.2011.00973.x
  • 18S. Christiansen, C. Scheid.

    Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation, in: ESAIM: Mathematical Modelling and Numerical Analysis 2011, vol. 45, no 4, p. 739–760.

    http://dx.doi.org/DOI:10.1051/m2an/2010100
  • 19H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, p. 4669–4678.

    http://dx.doi.org/10.1109/TAP.2011.2165471

International Conferences with Proceedings

  • 20T. Cabel, J. Charles, S. Lanteri.

    Performance evaluation of a multi-GPU enabled finite element method for computational electromagnetics, in: 4th Workshop on UnConventional High Performance Computing 2011 (UCHPC 2011). European Conference on Parallel and Distributed Computing (Euro-Par 2011)., Bordeaux, France, Sep 2011.
  • 21V. Dolean, M. E. Bouajaji, M. Gander, S. Lanteri.

    Optimized Schwarz methods for Maxwell's equations with non-zero electric conductivity, in: Domain Decomposition Methods in Science and Engineering XIX, Zhangjiajie, China, Y. Huang, R. Kornhuber, O. Widlund, J. Xu (editors), Lecture Notes in Computational Science and Engineering, Springer, 2011, vol. 78, p. 269–276.

    http://dx.doi.org/10.1007/978-3-642-11304-8
  • 22V. Dolean, M. E. Bouajaji, M. Gander, S. Lanteri, R. Perrussel.

    Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains, in: Domain Decomposition Methods in Science and Engineering XIX, Zhangjiajie, China, Y. Huang, R. Kornhuber, O. Widlund, J. Xu (editors), Lecture Notes in Computational Science and Engineering, Springer, 2011, vol. 78, p. 15–26.

    http://dx.doi.org/10.1007/978-3-642-11304-8
  • 23C. Durochat.

    Non-conforming discontinuous Galerkin time-domain method for solving Maxwell's equations on hybrid meshes, in: 5th International Conference on Advanced Computational Methods in Engineering (ACOMEN 2011), Gent, Belgium, Nov 2011.
  • 24C. Durochat, C. Scheid.

    Convergence and stability of a discontinuous Galerkin time-domain method for solving Maxwell's equations on hybrid meshes, in: The European Numerical Mathematics and Advanced Applications Conference (ENUMATH 2011), Leicester, United Kingdom, Sep 2011.
  • 25N. Glinsky, E. Bertrand.

    Etude numérique d'effets de site topographiques par une méthode éléments finis discontinus, in: 8ème Colloque National de l'Association Française de Génie Parasismique, Ecole des Ponts Paris Tech, France, Sep 2011.
  • 26N. Glinsky, E. Bertrand.

    Numerical study of topographical site effects by a discontinuous Galerkin finite element method, in: 4th IASPEI/IAEE International Symposium on Effect of Surface Geology on Seismic Motion, University of California at Santa Barbara, USA, Aug 2011.
  • 27S. Lanteri.

    Some recent developments of the DGTD method with practical applications, in: 2011 Loughborough Antennas & Propagation Conference (LAPC 2011), Loughborough, UK, Nov 2011, available on IEEE Xplore.
  • 28L. Moya.

    Locally implicit discontinuous Galerkin methods for time-domain Maxwell's equations, in: The European Numerical Mathematics and Advanced Applications Conference (ENUMATH 2011), Leicester, United Kingdom, Sep 2011.

Conferences without Proceedings

  • 29M. E. Bouajaji.

    Optimized Schwarz algorithms for the time-harmonic Maxwell equations discretized by a discontinuous Galerkin method, in: Conférence de la Société de Mathématiques Appliquées et Industrielles (SMAI 2011), Guidel, France, May 2011, contributed talk.
  • 30M. E. Bouajaji.

    Optimized Schwarz algorithms for the time-harmonic Maxwell equations discretized by a discontinuous Galerkin method, in: ESF OPTPDE Workshop : Fast Solvers for Simulation, Inversion, and Control of Wave Propagation Problems, Julius-Maximilians-Universität Würzburg, Germany, Sep 2011.
  • 31L. Moya.

    Locally implicit discontinuous Galerkin methods for Maxwell's equations, in: Conférence de la Société de Mathématiques Appliquées et Industie lles (SMAI 2011), Guidel, France, May 2011, poster.

Internal Reports

  • 32T. Cabel, J. Charles, S. Lanteri.

    Multi-GPU acceleration of a DGTD method for modeling human exposure to electromagnetic waves, INRIA, Apr 2011, no RR-7592.

    http://hal.inria.fr/inria-00583617/en
  • 33S. Lanteri, L. Li, R. Perrussel.

    A hybridizable discontinuous Galerkin method for the time-harmonic Maxwell's equations, INRIA, Jun 2011, no RR-7649.

    http://hal.inria.fr/inria-00601979/en
  • 34L. Moya, J. Verwer.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, INRIA, Feb 2011, no RR-7533.

    http://hal.inria.fr/inria-00565217/en
  • 35C. Scheid, S. Lanteri.

    Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, INRIA, May 2011, no RR-7634.

    http://hal.inria.fr/inria-00597374/en
References in notes
  • 36B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 37B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 38C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 39K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 40B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, p. 1319–1365.
  • 41J. Diaz, M. Grote.

    Energy conserving explicit local time-stepping for second-order wave equations, in: SIAM J. Sci. Comput., 2009, vol. 31, p. 1985–2014.
  • 42J. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 43J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 44A. Quarteroni, A. Valli.

    Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 1999.
  • 45B. Smith, P. Bjorstad, W. Gropp.

    Domain decomposition and parallel multilevel methods for elliptic partial differential equations, Cambridge University Press, 1996.
  • 46P. Solin, K. Segeth, I. Dolezel.

    Higher-order finite element methods, Studies in Advanced Mathematics, Chapman & Hall/CRC Press, 2003.
  • 47A. Toselli, O. Widlund.

    Domain Decomposition Methods. Algorithms and theory, Springer Series in Computational Mathematics, Springer Verlag, 2004, vol. 34.
  • 48J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, p. 889–901.
  • 49K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, p. 302–307.