Bibliography
Major publications by the team in recent years
-
1R. Abgrall, R. Saurel.
Discrete equations for physical and numerical compressible multiphase mixtures, in: Journal of Computational Physics, 2003, vol. 186, no 2, p. 361–396.
http://dx. doi. org/ 10. 1016/ S0021-9991(03)00011-1 -
2S. Gavrilyuk, N. Favrie, R. Saurel.
Modeling wave dynamics of compressible elastic materials, in: Journal of Computational Physics, 2008, vol. 227, p. 2941–2969.
http://dx. doi. org/ 10. 1016/ j. jcp. 2007. 11. 030 -
3S. Gavrilyuk, R. Saurel.
Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, in: Journal of Computational Physics, 2002, vol. 175, no 1, p. 326–360.
http://dx. doi. org/ 10. 1006/ jcph. 2001. 6951 -
4H. Guillard, F. Duval.
A Darcy law for the drift velocity in a two-phase model, in: J. Comput. Phys., 2007, vol. 224, p. 288–313.
http://dx. doi. org/ 10. 1016/ j. jcp. 2007. 02. 025 -
5M.-H. Lallemand, A. Chinnayya, O. Le Métayer.
Pressure relaxation procedures for multiphase compressible flows, in: Int. J. Numer. Meth. Fluids, 2005, vol. 49, no 1, p. 1–56.
http://dx. doi. org/ 10. 1002/ fld. 967 -
6O. Le Métayer, J. Massoni, R. Saurel.
Modelling evaporation fronts with reactive Riemann solvers, in: Journal of Computational Physics, 2005, vol. 205, no 2, p. 567–610.
http://dx. doi. org/ 10. 1016/ j. jcp. 2004. 11. 021 -
7R. Saurel, R. Abgrall.
A Multiphase Godunov method for compressible Multifluid and Multiphase flows, in: Journal of Computational Physics, 1999, vol. 150, p. 425–467.
http://dx. doi. org/ 10. 1006/ jcph. 1999. 6187 -
8R. Saurel, S. Gavrilyuk, F. Renaud.
A multiphase model with internal degree of freedom : Application to shock bubble interaction, in: Journal of Fluid Mechanics, 2003, vol. 495, p. 283-321.
http://dx. doi. org/ 10. 1017/ S002211200300630X -
9R. Saurel, F. Petitpas, Rémi. Abgrall.
Modeling phase transition in metastable liquids. Application to flashing and cavitating flows, in: Journal of Fluid Mechanics, 2008, vol. 607, p. 313–350.
http://dx. doi. org/ 10. 1017/ S0022112008002061
Doctoral Dissertations and Habilitation Theses
-
10L. Munier.
Simulations expérimentales et numériques des effets retardés d'une explosion en milieu clos et en présence de produits liquides, Aix-Marseille University, December 11th 2011. -
11J. Verhaegen.
Modélisation multiphasique d'écoulements et de phénomènes de dispersion issus d'explosion, Aix-Marseille University, April 15th 2011.
Articles in International Peer-Reviewed Journal
-
12A. Chauvin, G. Jourdan, É. Daniel, L. Houas, R. Tosello.
Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium, in: Physics Of Fluids, 2011, vol. 23.
http://dx. doi. org/ 10. 1063/ 1. 3657083 -
13N. Favrie, S. Gavrilyuk.
Diffuse interface model for compressible fluid - compressible elastic-plastic solid interaction, in: Journal of Computational Physics, 2011, accepted.
http://dx. doi. org/ 10. 1016/ j. jcp. 2011. 11. 027 -
14N. Favrie, S. Gavrilyuk.
Dynamics of shock waves in elastic-plastic solids, in: ESAIM Proceedings, 2011, vol. 33, p. 50–67, to appear. -
15N. Favrie, S. Gavrilyuk.
Mathematical and numerical model for nonlinear viscoplasticity, in: Philosophical Transactions of the Royal Society A, 2011, vol. 369, p. 2864–2880.
http://dx. doi. org/ 10. 1098/ rsta. 2011. 0099 -
16A. Forestier, S. Gavrilyuk.
Criterion of hyperbolicity for non-conservative quasilinear systems admitting a partially convex conservation law, in: Mathematical Methods in the Applied Sciences, 2011, vol. 34, p. 2148–2158.
http://dx. doi. org/ 10. 1002/ mma. 1512 -
17S. Hank, R. Saurel, O. Le Métayer.
A hyperbolic Eulerian model for dilute two-phase suspensions, in: Journal of Modern Physics, 2011, vol. 2, p. 997–1011.
http://dx. doi. org/ 10. 4236/ jmp. 2011. 29120 -
18O. Le Métayer, A. Massol, N. Favrie, S. Hank.
A discrete model for compressible flows in heterogeneous media, in: Journal of Computational Physics, 2011, vol. 230, p. 2470–2495.
http://dx. doi. org/ 10. 1016/ j. jcp. 2010. 12. 020 -
19R. Menina, R. Saurel, M. Zereg, L. Houas.
Modelling gas dynamics in 1D ducts with abrupt area change, in: International Journal of Shock Waves, 2011, vol. 21, p. 451–466.
http://dx. doi. org/ 10. 1007/ s00193-011-0321-3 -
20F. Petitpas, R. Saurel, B.K. Ahn, S. Ko.
Modelling cavitating flow around underwater missiles, in: International Journal of Naval Architecture and Ocean Engineering, 2011, accepted. -
21G. Richard, S. Gavrilyuk.
A new model of roll waves: comparison with Brock's experiments, in: Journal of Fuid Mechanics, 2011, submitted.
Scientific Books (or Scientific Book chapters)
-
22F. Dell'Isola, S. Gavrilyuk.
Variational Models and Methods in Solid and Fluid Mechanics, CISM Courses and Lectures, Springer, Wien, New York, 2012, vol. 535.
-
23M. Baer, J. Nunziato.
A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials., in: Int. J. of Multiphase Flows, 1986, vol. 12, p. 861–889. -
24A. Chinnayya, É. Daniel, R. Saurel.
Modelling detonation waves in heterogeneous energetic materials, in: Journal of Computational Physics, 2004, vol. 196, p. 490–538.
http://dx. doi. org/ 10. 1016/ j. jcp. 2003. 11. 015 -
25G. Dalmaso, P. LeFloch, F. Murat.
Definition and weak stability of non-conservative products, in: Journal de Mathématiques Pures et Appliquées, 1995, vol. 74, no 6, p. 483–548. -
26N. Favrie.
Un modèle d'interfaces diffuses pour l'interaction solide–fluide dans le cas des grandes déformations, Université de Provence, December 1rst, 2008. -
27N. Favrie, S. Gavrilyuk, R. Saurel.
Solid-fluid diffuse interface model in cases of extreme deformations, in: Journal of Computational Physics, 2009, vol. 228, no 16, p. 6037–6077.
http://dx. doi. org/ 10. 1016/ j. jcp. 2009. 05. 015 -
28R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher.
A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost-Fluid Method), in: Journal of Computational Physics, 1999, vol. 152, p. 457–492(36).
http://www. ingentaconnect. com/ content/ ap/ cp/ 1999/ 00000152/ 00000002/ art06236 -
29S. Gavrilyuk, R. Saurel.
Estimation of the turbulent energy production across a shock wave, in: Journal of Fluid Mechanics, 2006, vol. 549, p. 131–139.
http://dx. doi. org/ 10. 1017/ S0022112005008062 -
30S. Gavrilyuk, R. Saurel.
Rankine-Hugoniot relations for shocks in heterogeneous mixtures, in: Journal of Fluid Mechanics, 2007, vol. 575, p. 495–507.
http://dx. doi. org/ 10. 1017/ S0022112006004496 -
31H. Guillard, M. Labois, M. Grandotto.
A five-equation dissipative model for two-phase flows, in: 5th International Symposium on Finite Volumes for Complex Applications. - Problems and Perspectives, HERMES, 2008. -
32H. Guillard, A. Murrone.
On the behavior of upwind schemes in the low Mach number limit : II. Godunov type schemes, in: Computers and Fluids, 2004, vol. 33, no 4, p. 655–675. -
33H. Guillard, C. Viozat.
On the behaviour of upwind schemes in the low Mach number limit, in: Computers and Fluids, 1999, vol. 28, no 1, p. 63–86.
http://dx. doi. org/ 10. 1016/ S0045-7930(98)00017-6 -
34T.Y. Hou, P. LeFloch.
Why non-conservative schemes converge to the wrong solution: Error analysis, in: Math. of Comput., 1994, vol. 62, p. 497–530. -
35A. Kapila, R. Menikoff, J. Bdzil, S. Son, D. S. Stewart.
Two-phase modeling of DDT in granular materials : reduced equations., in: Physics of Fluids, 2001, vol. 13, no 10, p. 3002–3024.
http://dx. doi. org/ 10. 1063/ 1. 1398042 -
36S. Karni.
Multicomponent Flow Calculations by a Consistent Primitive Algorithm, in: Journal of Computational Physics, 1994, vol. 112, p. 31–43.
http://dx. doi. org/ 10. 1006/ jcph. 1994. 1080 -
37S. Karni.
Hybrid Multifluid Algorithms, in: SIAM Journal of Scientific Computing, 1996, vol. 17, no 5, p. 1019–1039.
http://dx. doi. org/ 10. 1137/ S106482759528003X -
38T. Kloczko.
Concept, architecture and performance study for a parallel code in CFD, in: 20th International Conference on Parallel Computational Fluid Dynamics, Lyon (France), May 19–22 2008. -
39M. Labois.
Modélisation des déséquilibres mécaniques dans les écoulements diphasiques : approches par relaxation et par modèle réduit, Université de Provence, October 31rst, 2008.
http://tel. archives-ouvertes. fr/ docs/ 00/ 33/ 88/ 18/ PDF/ these_Mathieu_Labois_2008. pdf -
40G. Perigaud, R. Saurel.
A compressible flow model with capillary effects, in: Journal of Computational Physics, 2005, vol. 209, p. 139–178.
http://dx. doi. org/ 10. 1016/ j. jcp. 2005. 03. 018 -
41F. Petitpas, R. Saurel, E. Franquet, A. Chinnayya.
Modelling detonation waves in condensed energetic materials : Multiphase CJ conditions and multidimensional computations, in: Shock Waves, 2009, vol. 19, no 5, p. 377–401.
http://dx. doi. org/ 10. 1007/ s00193-009-0217-7 -
42R. Saurel, R. Abgrall.
A simple method for compressible multifluid flows, in: SIAM J. Sci. Comp., 1999, vol. 21, no 3, p. 1115–1145. -
43R. Saurel, F. Petitpas, R. A. Berry.
Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, in: Journal of Computational Physics, 2009, vol. 228, no 5, p. 1678–1712.
http://dx. doi. org/ 10. 1016/ j. jcp. 2008. 11. 002 -
44R. Saurel, O. Le Métayer, J. Massoni, S. Gavrilyuk.
Shock jump relations for multiphase mixtures with stiff mechanical relaxation, in: International Journal of Shock Waves, 2007, vol. 16, no 3, p. 209–232.
http://dx. doi. org/ 10. 1007/ s00193-006-0065-7 -
45L. Schwartz.
Sur l'impossibilité de la multiplication des distributions, in: C.R.A.S. Paris, 1954, vol. I-239, p. 847–848. -
46D. Serre.
Sur le principe variationnel des équations de la mécanique des fluides compressibles, in: M2AN, 1993, vol. 27, no 6, p. 739–758. -
47H. Stewart, B. Wendroff.
Two-phase flow : Models and methods, in: Journal of Computational Physics, 1984, vol. 56, p. 363–409.