EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1R. Abgrall, R. Saurel.

    Discrete equations for physical and numerical compressible multiphase mixtures, in: Journal of Computational Physics, 2003, vol. 186, no 2, p. 361–396.

    http://dx.doi.org/10.1016/S0021-9991(03)00011-1
  • 2S. Gavrilyuk, N. Favrie, R. Saurel.

    Modeling wave dynamics of compressible elastic materials, in: Journal of Computational Physics, 2008, vol. 227, p. 2941–2969.

    http://dx.doi.org/10.1016/j.jcp.2007.11.030
  • 3S. Gavrilyuk, R. Saurel.

    Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, in: Journal of Computational Physics, 2002, vol. 175, no 1, p. 326–360.

    http://dx.doi.org/10.1006/jcph.2001.6951
  • 4H. Guillard, F. Duval.

    A Darcy law for the drift velocity in a two-phase model, in: J. Comput. Phys., 2007, vol. 224, p. 288–313.

    http://dx.doi.org/10.1016/j.jcp.2007.02.025
  • 5M.-H. Lallemand, A. Chinnayya, O. Le Métayer.

    Pressure relaxation procedures for multiphase compressible flows, in: Int. J. Numer. Meth. Fluids, 2005, vol. 49, no 1, p. 1–56.

    http://dx.doi.org/10.1002/fld.967
  • 6O. Le Métayer, J. Massoni, R. Saurel.

    Modelling evaporation fronts with reactive Riemann solvers, in: Journal of Computational Physics, 2005, vol. 205, no 2, p. 567–610.

    http://dx.doi.org/10.1016/j.jcp.2004.11.021
  • 7R. Saurel, R. Abgrall.

    A Multiphase Godunov method for compressible Multifluid and Multiphase flows, in: Journal of Computational Physics, 1999, vol. 150, p. 425–467.

    http://dx.doi.org/10.1006/jcph.1999.6187
  • 8R. Saurel, S. Gavrilyuk, F. Renaud.

    A multiphase model with internal degree of freedom : Application to shock bubble interaction, in: Journal of Fluid Mechanics, 2003, vol. 495, p. 283-321.

    http://dx.doi.org/10.1017/S002211200300630X
  • 9R. Saurel, F. Petitpas, Rémi. Abgrall.

    Modeling phase transition in metastable liquids. Application to flashing and cavitating flows, in: Journal of Fluid Mechanics, 2008, vol. 607, p. 313–350.

    http://dx.doi.org/10.1017/S0022112008002061
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 10L. Munier.

    Simulations expérimentales et numériques des effets retardés d'une explosion en milieu clos et en présence de produits liquides, Aix-Marseille University, December 11th 2011.
  • 11J. Verhaegen.

    Modélisation multiphasique d'écoulements et de phénomènes de dispersion issus d'explosion, Aix-Marseille University, April 15th 2011.

Articles in International Peer-Reviewed Journal

  • 12A. Chauvin, G. Jourdan, É. Daniel, L. Houas, R. Tosello.

    Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium, in: Physics Of Fluids, 2011, vol. 23.

    http://dx.doi.org/10.1063/1.3657083
  • 13N. Favrie, S. Gavrilyuk.

    Diffuse interface model for compressible fluid - compressible elastic-plastic solid interaction, in: Journal of Computational Physics, 2011, accepted.

    http://dx.doi.org/10.1016/j.jcp.2011.11.027
  • 14N. Favrie, S. Gavrilyuk.

    Dynamics of shock waves in elastic-plastic solids, in: ESAIM Proceedings, 2011, vol. 33, p. 50–67, to appear.
  • 15N. Favrie, S. Gavrilyuk.

    Mathematical and numerical model for nonlinear viscoplasticity, in: Philosophical Transactions of the Royal Society A, 2011, vol. 369, p. 2864–2880.

    http://dx.doi.org/10.1098/rsta.2011.0099
  • 16A. Forestier, S. Gavrilyuk.

    Criterion of hyperbolicity for non-conservative quasilinear systems admitting a partially convex conservation law, in: Mathematical Methods in the Applied Sciences, 2011, vol. 34, p. 2148–2158.

    http://dx.doi.org/10.1002/mma.1512
  • 17S. Hank, R. Saurel, O. Le Métayer.

    A hyperbolic Eulerian model for dilute two-phase suspensions, in: Journal of Modern Physics, 2011, vol. 2, p. 997–1011.

    http://dx.doi.org/10.4236/jmp.2011.29120
  • 18O. Le Métayer, A. Massol, N. Favrie, S. Hank.

    A discrete model for compressible flows in heterogeneous media, in: Journal of Computational Physics, 2011, vol. 230, p. 2470–2495.

    http://dx.doi.org/10.1016/j.jcp.2010.12.020
  • 19R. Menina, R. Saurel, M. Zereg, L. Houas.

    Modelling gas dynamics in 1D ducts with abrupt area change, in: International Journal of Shock Waves, 2011, vol. 21, p. 451–466.

    http://dx.doi.org/10.1007/s00193-011-0321-3
  • 20F. Petitpas, R. Saurel, B.K. Ahn, S. Ko.

    Modelling cavitating flow around underwater missiles, in: International Journal of Naval Architecture and Ocean Engineering, 2011, accepted.
  • 21G. Richard, S. Gavrilyuk.

    A new model of roll waves: comparison with Brock's experiments, in: Journal of Fuid Mechanics, 2011, submitted.

Scientific Books (or Scientific Book chapters)

  • 22F. Dell'Isola, S. Gavrilyuk.

    Variational Models and Methods in Solid and Fluid Mechanics, CISM Courses and Lectures, Springer, Wien, New York, 2012, vol. 535.
References in notes
  • 23M. Baer, J. Nunziato.

    A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials., in: Int. J. of Multiphase Flows, 1986, vol. 12, p. 861–889.
  • 24A. Chinnayya, É. Daniel, R. Saurel.

    Modelling detonation waves in heterogeneous energetic materials, in: Journal of Computational Physics, 2004, vol. 196, p. 490–538.

    http://dx.doi.org/10.1016/j.jcp.2003.11.015
  • 25G. Dalmaso, P. LeFloch, F. Murat.

    Definition and weak stability of non-conservative products, in: Journal de Mathématiques Pures et Appliquées, 1995, vol. 74, no 6, p. 483–548.
  • 26N. Favrie.

    Un modèle d'interfaces diffuses pour l'interaction solide–fluide dans le cas des grandes déformations, Université de Provence, December 1rst, 2008.
  • 27N. Favrie, S. Gavrilyuk, R. Saurel.

    Solid-fluid diffuse interface model in cases of extreme deformations, in: Journal of Computational Physics, 2009, vol. 228, no 16, p. 6037–6077.

    http://dx.doi.org/10.1016/j.jcp.2009.05.015
  • 28R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher.

    A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost-Fluid Method), in: Journal of Computational Physics, 1999, vol. 152, p. 457–492(36).

    http://www.ingentaconnect.com/content/ap/cp/1999/00000152/00000002/art06236
  • 29S. Gavrilyuk, R. Saurel.

    Estimation of the turbulent energy production across a shock wave, in: Journal of Fluid Mechanics, 2006, vol. 549, p. 131–139.

    http://dx.doi.org/10.1017/S0022112005008062
  • 30S. Gavrilyuk, R. Saurel.

    Rankine-Hugoniot relations for shocks in heterogeneous mixtures, in: Journal of Fluid Mechanics, 2007, vol. 575, p. 495–507.

    http://dx.doi.org/10.1017/S0022112006004496
  • 31H. Guillard, M. Labois, M. Grandotto.

    A five-equation dissipative model for two-phase flows, in: 5th International Symposium on Finite Volumes for Complex Applications. - Problems and Perspectives, HERMES, 2008.
  • 32H. Guillard, A. Murrone.

    On the behavior of upwind schemes in the low Mach number limit : II. Godunov type schemes, in: Computers and Fluids, 2004, vol. 33, no 4, p. 655–675.
  • 33H. Guillard, C. Viozat.

    On the behaviour of upwind schemes in the low Mach number limit, in: Computers and Fluids, 1999, vol. 28, no 1, p. 63–86.

    http://dx.doi.org/10.1016/S0045-7930(98)00017-6
  • 34T.Y. Hou, P. LeFloch.

    Why non-conservative schemes converge to the wrong solution: Error analysis, in: Math. of Comput., 1994, vol. 62, p. 497–530.
  • 35A. Kapila, R. Menikoff, J. Bdzil, S. Son, D. S. Stewart.

    Two-phase modeling of DDT in granular materials : reduced equations., in: Physics of Fluids, 2001, vol. 13, no 10, p. 3002–3024.

    http://dx.doi.org/10.1063/1.1398042
  • 36S. Karni.

    Multicomponent Flow Calculations by a Consistent Primitive Algorithm, in: Journal of Computational Physics, 1994, vol. 112, p. 31–43.

    http://dx.doi.org/10.1006/jcph.1994.1080
  • 37S. Karni.

    Hybrid Multifluid Algorithms, in: SIAM Journal of Scientific Computing, 1996, vol. 17, no 5, p. 1019–1039.

    http://dx.doi.org/10.1137/S106482759528003X
  • 38T. Kloczko.

    Concept, architecture and performance study for a parallel code in CFD, in: 20th International Conference on Parallel Computational Fluid Dynamics, Lyon (France), May 19–22 2008.
  • 39M. Labois.

    Modélisation des déséquilibres mécaniques dans les écoulements diphasiques : approches par relaxation et par modèle réduit, Université de Provence, October 31rst, 2008.

    http://tel.archives-ouvertes.fr/docs/00/33/88/18/PDF/these_Mathieu_Labois_2008.pdf
  • 40G. Perigaud, R. Saurel.

    A compressible flow model with capillary effects, in: Journal of Computational Physics, 2005, vol. 209, p. 139–178.

    http://dx.doi.org/10.1016/j.jcp.2005.03.018
  • 41F. Petitpas, R. Saurel, E. Franquet, A. Chinnayya.

    Modelling detonation waves in condensed energetic materials : Multiphase CJ conditions and multidimensional computations, in: Shock Waves, 2009, vol. 19, no 5, p. 377–401.

    http://dx.doi.org/10.1007/s00193-009-0217-7
  • 42R. Saurel, R. Abgrall.

    A simple method for compressible multifluid flows, in: SIAM J. Sci. Comp., 1999, vol. 21, no 3, p. 1115–1145.
  • 43R. Saurel, F. Petitpas, R. A. Berry.

    Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, in: Journal of Computational Physics, 2009, vol. 228, no 5, p. 1678–1712.

    http://dx.doi.org/10.1016/j.jcp.2008.11.002
  • 44R. Saurel, O. Le Métayer, J. Massoni, S. Gavrilyuk.

    Shock jump relations for multiphase mixtures with stiff mechanical relaxation, in: International Journal of Shock Waves, 2007, vol. 16, no 3, p. 209–232.

    http://dx.doi.org/10.1007/s00193-006-0065-7
  • 45L. Schwartz.

    Sur l'impossibilité de la multiplication des distributions, in: C.R.A.S. Paris, 1954, vol. I-239, p. 847–848.
  • 46D. Serre.

    Sur le principe variationnel des équations de la mécanique des fluides compressibles, in: M2AN, 1993, vol. 27, no 6, p. 739–758.
  • 47H. Stewart, B. Wendroff.

    Two-phase flow : Models and methods, in: Journal of Computational Physics, 1984, vol. 56, p. 363–409.