EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1C. Borcea, X. Goaoc, S. Lazard, S. Petitjean.

    Common Tangents to Spheres in 3 , in: Discrete & Computational Geometry, 2006, vol. 35, no 2, p. 287-300. [ DOI : 10.1007/s00454-005-1230-y ]

    http://hal.inria.fr/inria-00100261/en
  • 2H. Brönnimann, O. Devillers, V. Dujmovic, H. Everett, M. Glisse, X. Goaoc, S. Lazard, H.-S. Na, S. Whitesides.

    Lines and free line segments Tangent to Arbitrary Three-dimensional Convex Polyhedra, in: SIAM Journal on Computing, 2007, vol. 37, no 2, p. 522-551. [ DOI : 10.1137/S0097539705447116 ]

    http://hal.inria.fr/inria-00103916/en
  • 3H. Brönnimann, H. Everett, S. Lazard, F. Sottile, S. Whitesides.

    Transversals to line segments in three-dimensional space, in: Discrete & Computational Geometry, 2005, vol. 34, no 3, p. 381 - 390. [ DOI : 10.1007/s00454-005-1183-1 ]

    http://hal.inria.fr/inria-00000384/en
  • 4J. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier, E. P. Tsigaridas.

    On the topology of real algebraic plane curves, in: Mathematics in Computer Science, 2010.

    http://hal.inria.fr/inria-00517175/en
  • 5O. Cheong, X. Goaoc, A. Holmsen, S. Petitjean.

    Hadwiger and Helly-type theorems for disjoint unit spheres, in: Discrete & Computational Geometry, 2008, vol. 39, no 1-3, p. 194-212.

    http://hal.inria.fr/inria-00103856/en
  • 6O. Devillers, V. Dujmovic, H. Everett, X. Goaoc, S. Lazard, H.-S. Na, S. Petitjean.

    The expected number of 3D visibility events is linear, in: SIAM Journal on Computing, 2003, vol. 32, no 6, p. 1586-1620. [ DOI : 10.1137/S0097539702419662 ]

    http://hal.inria.fr/inria-00099810/en
  • 7L. Dupont, D. Lazard, S. Lazard, S. Petitjean.

    Near-Optimal Parameterization of the Intersection of Quadrics: I. The Generic Algorithm; II. A Classification of Pencils; III. Parameterizing Singular Intersections, in: Journal of Symbolic Computation, 2008, vol. 43, p. 168–191, 192–215, 216–232.

    http://hal.inria.fr/inria-00186089/en/, http://hal.inria.fr/inria-00186090/en/
  • 8H. Everett, D. Lazard, S. Lazard, M. Safey El Din.

    The Voronoi diagram of three lines, in: Journal of Discrete and Computational Geometry, 2009, vol. 42, no 1, p. 94-130. [ DOI : 10.1007/s00454-009-9173-3 ]

    http://www.springerlink.com/content/f5601q6324664k2p/?p=6d7bb74bf9df40b0b7756b3a5153809f&pi=5, http://hal.inria.fr/inria-00431518/en
  • 9M. Glisse, S. Lazard.

    An Upper Bound on the Average Size of Silhouettes, in: Discrete & Computational Geometry, 2008, vol. 40, no 2, p. 241-257. [ DOI : 10.1007/s00454-008-9089-3 ]

    http://hal.inria.fr/inria-00336571/en
  • 10S. Lazard, L. Peñaranda, S. Petitjean.

    Intersecting Quadrics: An Efficient and Exact Implementation, in: Computational Geometry, 2006, vol. 35, no 1-2, p. 74–99.

    http://hal.inria.fr/inria-00000380/en
  • 11S. Petitjean.

    Invariant-based characterization of the relative position of two projective conics, in: Non-Linear Computational Geometry, I. Z. Emiris, F. Sottile, T. Theobald (editors), Springer, 2008.

    http://hal.inria.fr/inria-00335968/en
Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 12G. Batog.

    Problèmes classiques en vision par ordinateur et en géométrie algorithmique revisités via la géométrie des droites, Université Nancy II, December 2011.

    http://hal.inria.fr/tel-00653043/en
  • 13X. Goaoc.

    Nombres de Helly, théorèmes d'épinglement et projection de complexes simpliciaux, Université Henri Poincaré - Nancy I, December 2011, Habilitation à Diriger des Recherches.

    http://hal.inria.fr/tel-00650204/en

Articles in International Peer-Reviewed Journal

  • 14B. Aronov, O. Cheong, X. Goaoc, R. Günter.

    Lines Pinning Lines, in: Discrete & Computational Geometry, 2011, The original publication is available at www.springerlink.com.

    http://hal.inria.fr/inria-00518028/en
  • 15O. Cheong, H. Everett, M. Glisse, J. Gudmundsson, S. Hornus, S. Lazard, M. Lee, H.-S. Na.

    Farthest-Polygon Voronoi Diagrams, in: Computational Geometry, 2011, vol. 44, no 4, 14 p. [ DOI : 10.1016/j.comgeo.2010.11.004 ]

    http://hal.inria.fr/inria-00442816/en
  • 16M. Glisse, S. Lazard.

    On the Complexity of Sets of Free Lines and Line Segments Among Balls in Three Dimensions, in: Discrete and Computational Geometry, 2011.

    http://hal.inria.fr/hal-00643880/en
  • 17X. Goaoc, S. Koenig, S. Petitjean.

    Pinning a Line by Balls or Ovaloids in R 3 , in: Discrete & Computational Geometry, 2011, vol. 45, no 2, p. 303-320, The original publication is available at www.springerlink.com. [ DOI : 10.1007/s00454-010-9297-5 ]

    http://hal.inria.fr/inria-00518033/en
  • 18M. Hemmer, L. Dupont, S. Petitjean, E. Schömer.

    A Complete, Exact and Efficient Implementation for Computing the Edge-Adjacency Graph of an Arrangement of Quadrics, in: Journal of Symbolic Computation, 2011, vol. 46, no 4, p. 467-494. [ DOI : 10.1016/j.jsc.2010.11.002 ]

    http://hal.inria.fr/inria-00537592/en

International Conferences with Proceedings

  • 19D. Chablat, E. Ottaviano, G. Moroz.

    A comparative study of 4-cable planar manipulators based on cylindrical algebraic decomposition, in: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, United States, August 2011, p. 1-10.

    http://hal.inria.fr/hal-00597924/en
  • 20V. Dujmovic, W. Evans, S. Lazard, W. Lenhart, G. Liotta, D. Rappaport, S. Wismath.

    On Point-sets that Support Planar Graphs, in: Graph Drawing, Eindhoven, Netherlands, 2011.

    http://hal.inria.fr/hal-00643824/en
  • 21I. Z. Emiris, G. Moroz.

    The assembly modes of rigid 11-bar linkages, in: IFToMM 2011 World Congress, Guanajuato, Mexico, IFToMM - Mexico, Universidad de Guanajuato, June 2011.

    http://hal.inria.fr/inria-00530327/en

Conferences without Proceedings

  • 22Y. Bouzidi, S. Lazard, M. Pouget, F. Rouillier.

    New bivariate system solver and topology of algebraic curves, in: 27th European Workshop on Computational Geometry - EuroCG 2011, Morschach, Switzerland, 2011.

    http://hal.inria.fr/inria-00580431/en
  • 23G. Tzoumas.

    Exact medial axis of quadratic NURBS curves, in: 27th European Workshop on Computational Geometry, Morschach, Switzerland, March 2011.

    http://hal.inria.fr/inria-00581588/en

Other Publications

References in notes
  • 26GMP: the GNU MP Bignum Library, The Free Software Foundation.

    http://gmplib.org/
  • 27LiDIA: a C++ Library for Computational Number Theory, Darmstadt University of Technology.

    http://www.informatik.tu-darmstadt.de/TI/LiDIA
  • 28QI: a C++ package for parameterizing intersections of quadrics, 2005, LORIA, INRIA Lorraine, VEGAS project.

    http://www.loria.fr/equipes/vegas/qi
  • 29E. Berberich, P. Emeliyanenko, M. Sagraloff.

    An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks, in: Alenex, 2011.
  • 30E. Berberich, M. Hemmer, S. Lazard, L. Peñaranda, M. Teillaud.

    Algebraic kernel, in: CGAL User and Reference Manual, 3.6 edition, CGAL Editorial board (editor), CGAL Editorial board, 2010.

    http://hal.inria.fr/inria-00537545/en
  • 31J. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier, E. P. Tsigaridas.

    On the topology of real algebraic plane curves, in: Mathematics in Computer Science, 2010.

    http://hal.inria.fr/inria-00517175/en
  • 32L. Dupont, D. Lazard, S. Lazard, S. Petitjean.

    Near-Optimal Parameterization of the Intersection of Quadrics: I. The Generic Algorithm, in: Journal of Symbolic Computation, 2008, vol. 43, p. 168–191.

    http://hal.inria.fr/inria-00186089/en/
  • 33L. Dupont, D. Lazard, S. Lazard, S. Petitjean.

    Near-Optimal Parameterization of the Intersection of Quadrics: II. A Classification of Pencils, in: Journal of Symbolic Computation, 2008, vol. 43, p. 192–215.

    http://hal.inria.fr/inria-00186090/en/
  • 34L. Dupont, D. Lazard, S. Lazard, S. Petitjean.

    Near-Optimal Parameterization of the Intersection of Quadrics: III. Parameterizing Singular Intersections, in: Journal of Symbolic Computation, 2008, vol. 43, p. 216–232.

    http://hal.inria.fr/inria-00186091/en/
  • 35F. Durand.

    Visibilité tridimensionnelle : étude analytique et applications, Université Joseph Fourier - Grenoble I, 1999.
  • 36S. Lazard, L. Peñaranda, E. P. Tsigaridas.

    Univariate Algebraic Kernel and Application to Arrangements, in: International Symposium on Experimental Algorithms – SEA Experimental Algorithms, 8th International Symposium, SEA 2009, Allemagne Dortmund, Springer, 2009, vol. 5526/2009, p. 209-220.

    http://hal.inria.fr/inria-00431559/en/
  • 37M. Pocchiola, G. Vegter.

    The visibility complex, in: International Journal of Computational Geometry and Applications, 1996, vol. 6, no 3, p. 1-30.
  • 38A. Requicha, H. Voelcker.

    Solid modeling: a historical summary and contemporary assessment, in: IEEE Computer Graphics and Applications, 1982, vol. 2, no 1, p. 9-24.