EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1E. Franquet, V. Perrier.

    Runge-Kutta discontinuous Galerkin method for interface flows with a maximum preserving limiter, in: Computers and Fluids, March 2012, vol. 65, p. 2-7. [ DOI : 10.1016/j.compfluid.2012.02.021 ]

    http://hal.inria.fr/hal-00739446
  • 2E. Franquet, V. Perrier.

    Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, in: Journal of Computational Physics, February 2012, vol. 231, no 11, p. 4096-4141. [ DOI : 10.1016/j.jcp.2012.02.002 ]

    http://hal.inria.fr/hal-00684427
  • 3Y. Moguen, E. Dick, J. Vierendeels, P. Bruel.

    Pressure-velocity coupling for unsteady low Mach number flow simulations: An improvement of the AUSM+ -up scheme, in: Journal of Computational and Applied Mathematics, 2012. [ DOI : 10.1016/j.cam.2012.10.029 ]

    http://hal.inria.fr/hal-00764285
  • 4Y. Moguen, T. Kousksou, P. Bruel, J. Vierendeels, E. Dick.

    Pressure-velocity coupling allowing acoustic calculation in low Mach number flow, in: Journal of Computational Physics, 2012, vol. 231, p. 5522-5541.

    http://hal.inria.fr/hal-00764270
  • 5E. Motheau, T. Lederlin, J.-L. Florenciano, P. Bruel.

    LES investigation of the flow through an effusion-cooled aeronautical combustor model, in: Flow, Turbulence and Combustion, 2012, vol. 88, p. 169-189.

    http://hal.inria.fr/hal-00764269

International Conferences with Proceedings

  • 6Y. Moguen, P. Bruel, E. Dick.

    Bundary conditions for semi-implicit low Mach number flow calculation, in: ECCOMAS - 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, September 2012.

    http://hal.inria.fr/hal-00768523
  • 7V. Perrier, E. Franquet.

    A high order conservative method for the simulation of compressible multiphase flows, in: ECCOMAS - 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, September 2012.

    http://hal.inria.fr/hal-00767336

Conferences without Proceedings

  • 8P. Bruel, J.-L. Florenciano, T. Kousksou, T. Lederlin.

    A test facility for assessing simulations of jets in cross flow configurations, in: 9th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Thessaloniki, Greece, ERCOFTAC, June 2012.

    http://hal.inria.fr/hal-00768340
References in notes
  • 9F. Bassi, A. Crivellini, S. Rebay, M. Savini.

    Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, p. 507-540.
  • 10F. Bassi, S. Rebay.

    A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, p. 267–279.

    http://dx.doi.org/10.1006/jcph.1996.5572
  • 11V. Billey, J. Periaux, B. Stoufflet, A. Dervieux, L. Fezoui, V. Selmin.

    Recent improvements in Galerkin and upwind Euler solvers and application to 3-D transonic flow in aircraft design, in: Computer Methods in Applied Mechanics and Engineering, 1989, vol. 75, no 1-3, p. 409-414.
  • 12B. Cockburn, S. Hou, C.-W. Shu.

    The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, p. 545–581.

    http://dx.doi.org/10.2307/2008501
  • 13B. Cockburn, S. Y. Lin, C.-W. Shu.

    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, p. 90–113.
  • 14B. Cockburn, C.-W. Shu.

    TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, p. 411–435.

    http://dx.doi.org/10.2307/2008474
  • 15B. Cockburn, C.-W. Shu.

    The Runge-Kutta local projection P 1 -discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, p. 337–361.
  • 16B. Cockburn, C.-W. Shu.

    The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, p. 199–224.

    http://dx.doi.org/10.1006/jcph.1998.5892
  • 17S. S. Colis.

    Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002.
  • 18M. Feistauer, V. Kučera.

    On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, p. 208–221.

    http://dx.doi.org/10.1016/j.jcp.2007.01.035
  • 19R. J. Goldstein, E. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulacki, U. Kortshagen, S. Garrick.

    Heat transfer - A review of 2000 literature, in: International Journal of Heat and Mass Transfer, 2002, vol. 45, no 14, p. 2853-2957. [ DOI : DOI: 10.1016/S0017-9310(02)00027-3 ]
  • 20R. Hartmann, P. Houston.

    Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, p. 1–20.
  • 21R. Hartmann, P. Houston.

    Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. II. Goal-oriented a posteriori error estimation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 2, p. 141–162.
  • 22C. Johnson, A. Szepessy, P. Hansbo.

    On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, p. 107–129.

    http://dx.doi.org/10.2307/2008684
  • 23H. Lee, J. Park, J. Lee.

    Flow visualization and film cooling effectiveness measurements around shaped holes with compound angle orientations, in: Int. J. Heat Mass Transfer, 2002, vol. 45, p. 145-156.
  • 24P. Lesaint, P.-A. Raviart.

    On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, p. 89–123. Publication No. 33.
  • 25F. Lörcher, G. Gassner, C.-D. Munz.

    An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, p. 5649–5670.

    http://dx.doi.org/10.1016/j.jcp.2008.02.015
  • 26R. Margason.

    Fifty Years of Jet in Cross Flow Research, in: NATO AGARD Conference, Winchester, UK, 1993, vol. CP-534, p. 1.1-1.41.
  • 27A. Most.

    Étude numérique et expérimentale des écoulements pariétaux avec transfert de masse à travers une paroi multi-perforée, Pau University, 2007.
  • 28A. Most, N. Savary, C. Bérat.

    Reactive flow modelling of a combustion chamber with a multiperforated liner, in: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, AIAA Paper 2007-5003, 8-11 July 2007.
  • 29E. Motheau, T. Lederlin, P. Bruel.

    LES investigation of the flow through an effusion-cooled aeronautical combustor model, in: 8th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, Marseille, France, June 2010, p. 872-877.
  • 30C. Prière.

    Simulation aux grandes échelles: application au jet transverse, INP Toulouse, 2005.
  • 31W. Reed, T. Hill.

    Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479.
  • 32S. Smith, M. Mungal.

    Mixing, structure and scaling of the jet in crossflow, in: Journal of Fluid Mechanics, 1998, vol. 357, p. 83-122.