Major publications by the team in recent years Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 11A. Crestetto.

    Optimisation de méthodes numériques pour la physique des plasmas. Application aux faisceaux de particules chargées., Université de Strasbourg, October 2012.

  • 12M. Mehrenberger.

    Inegalites d'Ingham et schemas semi-lagrangiens pour l'equation de Vlasov, Université de Strasbourg, October 2012, Habilitation à Diriger des Recherches.


Articles in International Peer-Reviewed Journals

  • 13R. Abdelkhalek, H. Calandra, O. Coulaud, G. Latu, J. Roman.

    Fast seismic modeling and reverse time migration on a graphics processing unit cluster, in: Concurrency and Computation: Practice and Experience, 2012, vol. 24, no 7, p. 739-750. [ DOI : 10.1002/cpe.1875 ]

  • 14M. Bergot, M. Durufle.

    Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra, in: Communications in Computational Physics, 2012, submitted p, submitted.

  • 15N. Besse.

    Global weak solutions for the relativistic waterbag continuum, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, 1150001 p, 43 pages.

  • 16M. Bostan, C. Caldini Queiros.

    Approximation de rayon de Larmor fini pour les plasmas magnétisés collisionnels. Finite Larmor radius approximation for collisional magnetized plasmas, in: Comptes Rendus de l Académie des Sciences - Series I - Mathematics, October 2012.

  • 17J.-P. Braeunig, N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.

    Guiding-center simulations on curvilinear meshes, in: Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 2012, vol. 5, no 2, p. 271-282. [ DOI : 10.3934/dcdss.2012.5.271 ]

  • 18A. Canelas, J. R. Roche, J. Herskovits.

    Shape optimization for inverse electromagnetic casting problems, in: Inverse Problems in Science and Engineering, 2012, vol. 20, no 7, p. 951-972. [ DOI : 10.1080/17415977.2011.637206 ]

  • 19A. Crestetto, N. Crouseilles, M. Lemou.

    Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles, in: Kinetic Related Models, 2013.

  • 20N. Crouseilles, E. Frénod, S. Hirstoaga, A. Mouton.

    Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field, in: Mathematical Models and Methods in Applied Sciences, November 2012, vol. 00, no 00, p. 1 –2.

  • 21N. Crouseilles, A. Ratnani, E. Sonnendrücker.

    An Isogeometric Analysis Approach for the study of the gyrokinetic quasi-neutrality equation, in: Journal of Computational Physics, January 2012, vol. 231, no 2, p. 373-393. [ DOI : 10.1016/j.jcp.2011.09.004 ]

  • 22E. Havlickova, W. Fundamenski, D. Tskhakaya, G. Manfredi, D. Moulton.

    Comparison of fluid and kinetic models of target energy fluxes during edge localized modes, in: Plasma Phys. Control. Fusion, 2012, vol. 54, 045002 p.
  • 23S. Jund, S. Salmon, E. Sonnendrücker.

    High order low dissipation conforming finite-element discretization of the Maxwell equations, in: Commun. Comput. Phys, 2012, vol. 11, no 3.
  • 24D. Moulton, W. Fundamenski, G. Manfredi, S. Hirstoaga, D. Tskhakaya.

    Comparison of Free-Streaming ELM Formulae to a Vlasov Simulation, in: Journal of Nuclear Materials, 2012.

Invited Conferences

  • 25M. Mehrenberger, M. Bergot, V. Grandgirard, G. Latu, H. Sellama, E. Sonnendrücker.

    Conservative Semi-Lagrangian solvers on mapped meshes, in: ICOPS International Conference on Plasma Science, Edinburgh, United Kingdom, December 2012.


International Conferences with Proceedings

  • 26J.-P. Braeunig, N. Crouseilles, M. Mehrenberger, E. Sonnendrücker.

    Guiding-center simulations on curvilinear meshes using semi-Lagrangian conservative methods, in: Numerical Models for Controlled Fusion, Porquerolles, France, April 2012, vol. 5, p. 271-282.


Internal Reports

  • 27G. Latu, M. Becoulet, G. Dif-Pradalier, V. Grandgirard, M. Hoelzl, G. Huysmans, X. Lacoste, E. Nardon, F. Orain, C. Passeron, P. Ramet, A. Ratnani.

    Non regression testing for the JOREK code, Inria, November 2012, no RR-8134, 17 p.

  • 28G. Latu, V. Grandgirard, J. Abiteboul, M. Bergot, N. Crouseilles, X. Garbet, P. Ghendrih, M. Mehrenberger, Y. Sarazin, H. Sellama, E. Sonnendrücker, D. Zarzoso.

    Accuracy of unperturbed motion of particles in a gyrokinetic semi-Lagrangian code, Inria, September 2012, no RR-8054, 17 p.


Other Publications

References in notes
  • 45F. Assous, P. Ciarlet, S. Labrunie.

    Theoretical tools to solve the axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2002, vol. 25, p. 49–78.
  • 46F. Assous, P. Ciarlet, S. Labrunie.

    Solution of axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2003, vol. 26, p. 861–896.
  • 47F. Assous, P. Ciarlet, S. Labrunie, J. Segré.

    Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method, in: J. Comp. Phys., 2003, vol. 191, p. 147–176.
  • 48F. Assous, P. Ciarlet, J. Segré.

    Numerical solution to the time dependent Maxwell equations in two dimensional singular domains: the Singular Complement Method, in: J. Comput. Phys., 2000, vol. 161, p. 218–249.
  • 49F. Assous, P. Ciarlet, E. Sonnendrücker.

    Resolution of the Maxwell equations in a domain with reentrant corners, in: M  2 AN, 1998, vol. 32, p. 359–389.
  • 50C. Bandle.

    Asymptotic behavior of large solutions of elliptic equations, in: Annals of University of Craiova, Math. Comp. Sci. Ser., 2005, vol. 32, p. 1–8.
  • 51C. Bardos, P. Degond.

    Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 1985, vol. 2, no 2, p. 101–118.
  • 52S. Benachour, F. Filbet, P. Laurençot, E. Sonnendrücker.

    Global existence for the Vlasov-Darwin system in 3 for small initial data, in: Math. Methods Appl. Sci., 2003, vol. 26, no 4, p. 297–319.
  • 53M. Bennoune, M. Lemou, L. Mieussens.

    Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics, in: Journal of Computational Physics, 2008, vol. 227, no 8, p. 3781 - 3803. [ DOI : 10.1016/j.jcp.2007.11.032 ]

  • 54C. Bernardi, M. Dauge, Y. Maday.

    Spectral methods for axisymmetric domains, Series in Applied Mathematics, Gauthier-Villars, Paris and North Holland, Amsterdam, 1999.
  • 55N. Besse, P. Bertrand.

    Gyro-water-bag approach in nonlinear gyrokinetic turbulence, in: J. Comput. Phys., 2009, vol. 228, no 11, p. 3973–3995.

  • 56C. Birdsall, A. Langdon.

    Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.
  • 57Y. Brenier.

    Convergence of the Vlasov-Poisson system to the incompressible Euler equations, in: Comm. Partial Differential Equations, 2000, vol. 25, no 3-4, p. 737–754.
  • 58P. Ciarlet, N. Filonov, S. Labrunie.

    Un résultat de fermeture pour les équations de Maxwell en géométrie axisymétrique, in: C. R. Acad. Sci. Paris série I, 2000, vol. 331, p. 293–298.
  • 59R. DiPerna, P.-L. Lions.

    Global weak solutions of the Vlasov-Maxwell systems, in: Comm. Pure. Appl. Math., 1989, vol. XLII, p. 729–757.
  • 60B. Eliasson.

    Outflow boundary conditions for the Fourier transformed one-dimensional Vlasov-Poisson system, in: Journal of Scientific Computing, 2001, vol. 16, no 1, p. 1–28.
  • 61B. Eliasson.

    Numerical modelling of the two-dimensional fourier transformed vlasov-maxwell system, in: J. Comput. Phys., 2003, vol. 190, no 2, p. 501–522.
  • 62B. Eliasson.

    Numerical simulations of the fourier-transformed vlasov- maxwell system in higher dimensions—theory and applications., in: Transport Theory and Statistical Physics, 2010, vol. 39, p. 387–465.
  • 63F. Filbet, E. Sonnendrücker, P. Bertrand.

    Conservative numerical schemes for the Vlasov equation, in: J. Comput. Phys., 2001, vol. 172, no 1, p. 166–187.
  • 64I. Foster, C. Kesselman.

    The Grid, blueprint for a new computing infrastructure, Morgan Kaufmann Publishers, Inc., 1998.
  • 65E. Frénod, E. Sonnendrücker.

    Long time behavior of the Vlasov equation with a strong external magnetic field, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 4, p. 539–553.
  • 66E. Frénod, E. Sonnendrücker.

    The finite Larmor radius approximation, in: SIAM J. Math. Anal., 2001, vol. 32, no 6, p. 1227–1247.
  • 67E. Frénod, E. Sonnendrücker.

    Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, in: Asymptot. Anal., 1998, vol. 18, no 3-4, p. 193–213.
  • 68E. Frénod, F. Salvarani, E. Sonnendrücker.

    Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, in: Mathematical Models and Methods in Applied Sciences, 2009, vol. 19, no 2, p. 175-197, ACM 82D10 35B27 76X05.

  • 69W. Fundamenski, R. A. Pitts, J. E. Contributors.

    A model of ELM filament energy evolution due to parallel losses, in: Plasma Phys. Control. Fus., 2006, vol. 48, no 1, 109 p.
  • 70E. Garcia, S. Labrunie.

    Régularité spatio-temporelle de la solution des équations de Maxwell dans des domaines non-convexes, in: C. R. Acad. Sci. Paris, série I, 2002, vol. 334, p. 293–298.
  • 71R. T. Glassey.

    The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996, xii+241 p.
  • 72F. Golse, L. Saint-Raymond.

    The Vlasov-Poisson system with strong magnetic field in quasineutral regime, in: Math. Models Methods Appl. Sci., 2003, vol. 13, no 5, p. 661–714.
  • 73M. Griebel, G. Zumbusch.

    Hash based adaptive parallel multilevel methods with space-filling curves, 2000.
  • 74E. Horst, R. Hunze.

    Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, in: Math. Methods Appl. Sci., 1984, vol. 6, no 2, p. 262–279.
  • 75R. G. Littlejohn.

    A guiding center Hamiltonian: A new approach., in: J. Math. Phys., 1979, vol. 20, no 12, p. 2445–2458.
  • 76R. G. Littlejohn.

    Hamiltonian formulation of guiding center motion, in: Physics of Fluids, 1981, vol. 24, no 9, p. 1730–1749.
  • 77R. G. Littlejohn.

    Hamiltonian perturbation theory in noncanonical coordinates, in: J. Math. Phys., 1982, vol. 23, no 5, p. 742–747.
  • 78G. Manfredi, S. Hirstoaga, S. Devaux.

    Vlasov modelling of parallel transport in a tokamak scrape-off layer, in: Plasma Phys. Control. Fus., 2011, vol. 53, no 1, 015012 p.
  • 79M. Parashar, J. C. Browne, C. Edwards, K. Klimkowski.

    A common data management infrastructure for adaptive algorithms for PDE solutions, 1997.
  • 80L. Saint-Raymond.

    The gyrokinetic approximation for the Vlasov-Poisson system, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 9, p. 1305–1332.
  • 81E. Violard.

    A Semantic Framework To Adress Data Locality in Data Parallel Programs, in: Parallel Computing, 2004, vol. 30, no 1, p. 139–161.