Major publications by the team in recent years
  • 1P. Auger, E. Kouokam, G. Sallet, M. Tchuente, B. Tsanou.

    The Ross-Macdonald model in a patchy environment, in: Mathematical Biosciences, 2008, vol. 216, no 2, p. 123–131.
  • 2B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet.

    Stability of differential susceptibility and infectivity epidemic models., in: Journal of Mathematical Biology, February 2010, vol. 62, no 1, p. 39-64.

    http://www.springerlink.com/content/0612425711325kh4/, http://hal.inria.fr/inria-00544315/en
  • 3A. A. Fall, A. Iggidr, G. Sallet, J.-J. Tewa.

    Epidemiological models and Lyapunov techniques, in: Mathematical Modelling of Natural Phenomena, 2007, vol. 2, no 1, p. 55-72.
  • 4A. Iggidr, J.-C. Kamgang, G. Sallet, J.-J. Tewa.

    Global analysis of new malaria intrahost models with a competitive exclusion principle., in: SIAM J. Appl. Math., 2006, vol. 67, no 1, p. 260-278.
  • 5A. Iggidr, J. Mbang, G. Sallet.

    Stability analysis of within-host parasite models with delays., in: Math. Biosci., 2007, vol. 209, no 1, p. 51-75.
  • 6A. Iggidr, J. Mbang, G. Sallet, J.-J. Tewa.

    Multi-compartment models, in: Discrete Contin. Dyn. Syst., 2007, no Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl., p. 506–519.
  • 7D. Ngom, A. Iggidr, A. Guiro, A. Ouahbi.

    An Observer for a Nonlinear Age-Structured Model of a Harvested Fish Population, in: Mathematical Biosciences and Engineering, 2008, vol. 5, no 2, p. 337 –354.
Publications of the year

Articles in International Peer-Reviewed Journals

  • 8P. Adda, D. Bichara.

    Global stability for SIR and SIRS models with differential mortality, in: International Journal of Pure and Applied Mathematics, IJPAM, October 2012, vol. 80, no 3, p. 425-433.

  • 9R. Anguelov, Y. Dumont, J. M. S. Lubuma.

    Mathematical modeling of sterile insect technology for control of anopheles mosquito, in: Computers and Mathematics with Applications, 2012, vol. 64, no 3, p. 374-389.

  • 10P. Auger, A. Moussaoui, G. Sallet.

    Basic Reproduction Ratio for a Fishery Model in a Patchy Environment., in: Acta Biotheoretica, 2012, vol. 60, no 1-2, p. 167-188. [ DOI : 10.1007/s10441-012-9155-3 ]

  • 11Y. Dumont, J. M. Tchuenche.

    Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, in: Journal of Mathematical Biology, 2012, vol. 65, no 5, p. 809-854.

  • 12A. Guiro, A. Iggidr, D. Ngom.

    On the Stock Estimation for a Harvested Fish Population, in: Bulletin of Mathematical Biology, 2012, vol. 74, no 1, p. 116-142. [ DOI : 10.1007/s11538-011-9667-z ]

  • 13A. Iggidr, G. Sallet, B. Tsanou.

    Global stability analysis of a metapopulation SIS epidemic model, in: Mathematical Population Studies, 2012, vol. 19, no 3, p. 115-129.


Internal Reports

  • 14D. Bichara, N. Cozic, A. Iggidr.

    On the estimation of sequestered parasite population in falciparum malaria patients, Inria, December 2012, no RR-8178, 14 p.

  • 15D. Bichara, A. Iggidr, G. Sallet.

    Competitive exclusion principle for SIS and SIR models with n strains, Inria, March 2012, no RR-7902, 15 p.

  • 16M. Diaby, A. Iggidr.

    OBSERVER DESIGN FOR A SCHISTOSOMIASIS MODEL, Inria, November 2012, no RR-8156, 20 p.

  • 17M. Diaby, A. Iggidr, M. Sy, A. Sène.

    Global analysis of a shistosomiasis infection with biological control, Inria, November 2012, no RR-8148, 24 p.

References in notes
  • 18H. Bogreau, F. Renaud, H. Bouchiba, P. Durand, S.-B. Assi, M.-C. Henry, E. Garnotel, B. Pradines, T. Fusai, B. Wade, E. Adehossi, P. Parola, M. A. Kamil, O. Puijalon, C. Rogier.

    Genetic diversity and structure of African Plasmodium falciparum populations in urban and rural areas., in: Am J Trop Med Hyg, 2006, vol. 74, no 6, p. 953–959.
  • 19O. Diekmann, J. A. P. Heesterbeek.

    Mathematical epidemiology of infectious diseases, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons Ltd., Chichester, 2000.
  • 20O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz.

    On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, in: J. Math. Biol., 1990, vol. 28, no 4, p. 365–382.
  • 21B. Gryseels, K. Polman, J. Clerinx, L. Kestens.

    Human schistosomiasis., in: Lancet, 2006, vol. 368, no 9541, p. 1106–1118.
  • 22J. A. P. Heesterbeek, K. Dietz.

    The concept of R 0 in epidemic theory, in: Statist. Neerlandica, 1996, vol. 50, no 1, p. 89–110.
  • 23J. A. P. Heesterbeek.

    A brief history of R 0 and a recipe for its calculation, in: Acta Biotheorica, 2002, vol. 50, p. 189-204.
  • 24J. A. P. Heesterbeek, M. Roberts.

    The type-reproduction number T in models for infectious disease control, in: Math. Biosci., 2006.
  • 25J. Heffernan, L. Smith.

    Perspectives on the basic reproductive ratio, in: J. R. Soc. Interface, 2005, vol. 2, no 4, p. 281-293.
  • 26J. M. Hyman, J. Li.

    The reproductive number for an HIV model with differential infectivity and staged progression., in: Linear Algebra Appl., 2005, vol. 398, p. 101-116.
  • 27J. A. Jacquez, C. P. Simon.

    Qualitative theory of compartmental systems with lags, in: Math. Biosci., 2002, vol. 180, p. 329-362.
  • 28J. A. Jacquez, C. P. Simon, J. Koopman.

    The reproduction number in deterministic models of contagious diseases, in: Comment. Theor. Biol.., 1991, vol. 2, no 3.
  • 29N. MacDonald.

    Time lags in biological models, Lecture Notes in Biomath., Springer-Verlag, 1978, no 27.
  • 30M. Roberts, J. A. P. Heesterbeek.

    A new method for estimating the effort required to control an infectiou disease, in: Proc. R. Soc. Lond. B Biol. Sci., 2003, vol. 270, no 1522.
  • 31M. G. Roberts.

    The pluses and minuses of R0., in: J R Soc Interface, 2007, vol. 4, no 16, p. 949–961.
  • 32A. G. P. Ross, P. B. Bartley, A. C. Sleigh, G. R. Olds, Y. Li, G. M. Williams, D. P. McManus.

    Schistosomiasis., in: N Engl J Med, Apr 2002, vol. 346, no 16, p. 1212–1220.
  • 33D. Siljak.

    Large-scale dynamic systems. Stability and structure, system science and engineering, Elsevier North-Holland, 1978.
  • 34H. R. Thieme.

    Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, in: SIAM J. Appl. Math., 2009, vol. 70, no 1, p. 188–211.
  • 35L. N. Trefethen, M. Embree.

    Spectra and pseudospectra, Princeton University Press, Princeton, NJ, 2005.
  • 36L. N. Trefethen.

    Approximation theory and numerical linear algebra, in: Algorithms for approximation, II (Shrivenham, 1988), London, Chapman and Hall, London, 1990, p. 336–360.
  • 37L. N. Trefethen.

    Pseudospectra of linear operators, in: SIAM Rev., 1997, vol. 39, no 3, p. 383–406.
  • 38J. X. Velasco-Hernández, J. A. García, D. E. Kirschner.

    Remarks on modeling host-viral dynamics and treatment., in: Mathematical approaches for emerging and reemerging infectious diseases: An introduction. Proceedings of a tutorial Introduction to epidemiology and immunology, IMA Vol. Math. Appl., Springer, 2002, vol. 125, p. 287-308.
  • 39 WHO.

    The control of Schistosomiasis: Second Report of the WHO Expert Committee., World Health Organization, Geneva, 1993, no 830.
  • 40P. van den Driessche, J. Watmough.

    reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, in: Math. Biosci., 2002, vol. 180, p. 29-48.