Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1A. Hindawi.
Transport Optimal en Théorie du Contrôle, Univ. de Nice - Sophia Antipolis, June 2012.
Articles in International Peer-Reviewed Journals
-
2A. Bombrun, J.-B. Pomet.
The averaged control system of fast oscillating control systems, in: SIAM J. Control Optim., 2013, to appear.
http://hal. inria. fr/ hal-00648330/ -
3B. Bonnard, J.-B. Caillau, G. Janin.
Conjugate-cut loci and injectivity domains on two-spheres of revolution, in: ESAIM Control Optim. Calc. Var., 2013, to appear.
http://www. esaim-cocv. org/ -
4B. Bonnard, M. Chyba, J. Marriott.
A Geometric Question in the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: Math. Control Relat. Fields, 2013, to appear (special issue “Geometric Optimal Control”). -
5B. Bonnard, M. Chyba, J. Marriott.
Singular Trajectories and the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: SIAM J. Control Optim., 2013, to appear. -
6B. Bonnard, O. Cots.
Geometric Numerical Methods and Results in the Control Imaging Problem in Nuclear Magnetic Resonance, in: Math. Models Methods Appl. Sci., 2013, to appear.
http://www. worldscientific. com/ worldscinet/ m3as -
7B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny, Y. Zhang.
Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: IEEE Transactions on Automatic Control, August 2012, vol. 57, no 8, p. 1957-1969. [ DOI : 10.1109/TAC.2012.2195859 ]
http://hal. archives-ouvertes. fr/ hal-00750032/ -
8B. Bonnard, O. Cots, N. Shcherbakova.
The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion, in: Math. Control Relat. Fields, 2013, to appear (special issue “Geometric Optimal Control”). -
9B. Bonnard, S. J. Glaser, D. Sugny.
A review of geometric optimal control for quantum systems in nuclear magnetic resonance, in: Adv. Math. Phys., 2012, Art. ID 857493, 29 p. [ DOI : 10.1155/2012/857493 ]
http://hal. archives-ouvertes. fr/ hal-00750040/ -
10A. Figalli, L. Rifford, C. Villani.
Nearly round spheres look convex, in: Amer. J. Math., 2012, vol. 134, no 1, p. 109–139.
http://dx. doi. org/ 10. 1353/ ajm. 2012. 0000 -
11L. Rifford.
Closing Geodesics in Topology, in: J. Differential Geom., 2012, vol. 91, p. 361-381.
http://projecteuclid. org/ euclid. jdg/ 1349292669 -
12L. Rifford.
Ricci curvatures in Carnot groups, in: Math. Control Relat. Fields, 2013, to appear (special issue “Geometric Optimal Control”). -
13L. Rifford, R. O. Ruggiero.
Generic Properties of Closed Orbits of Hamiltonian Flows from Mañé's Viewpoint, in: International Mathematics Research Notices, 2012. [ DOI : 10.1093/imrn/rnr231 ]
http://imrn. oxfordjournals. org/ content/ early/ 2011/ 12/ 14/ imrn. rnr231. abstract
International Conferences with Proceedings
-
14B. Bonnard, M. Chyba, J. Marriott, G. Picot.
Singular trajectories in the contrast problem in nuclear magnetic resonance, in: 5th Internat. Conf. on Optimization and Control with Application, Beijing, December 2012. -
15B. Bonnard, O. Cots, L. Jassionnesse.
Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces, in: INDAM meeting on Geometric Control and sub-Riemannian Geometry, May 2012, Proceedings to appear in 2013.
http://www. cmap. polytechnique. fr/ geometric-control-srg/ -
16L. Rifford.
Sub-Riemannian Geometry and Optimal Transport, in: Géométrie sous-riemannienne, CIMPA school in Beyrouth, Lebanon, February 2012, CIMPA, 2013, lecture notes to appear.
Conferences without Proceedings
-
17L. Rifford.
From the Poincaré “lignes de partage” to the convex earth theorem, in: International Conference “Henri Poincaré : du mathématicien au philosophe”, Paris, Institut Henri Poincaré, November 2012.
Scientific Books (or Scientific Book chapters)
-
18B. Bonnard, D. Sugny.
Optimal control with applications in space and quantum dynamics, vol. 5 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences, Springfield, MO, 2012, xvi+283 p.
Other Publications
-
19B. Bonnard, J.-B. Caillau.
Metrics with equatorial singularities on the sphère, 2012, submitted to Annali di Matematica Pura ed Applicata.
http://www. sciencedirect. com/ science/ journal/ 09262245 -
20B. Bonnard, O. Cots, N. Shcherbakova.
Riemannian metrics on 2d-manifolds related to the Euler-Poinsot rigid body motion, 2012, submitted to Ann. Inst. H. Poincaré Anal. Non Linéaire. -
21A. Figalli, L. Rifford.
Closing Aubry sets I & II, 2012, submitted.
-
22A. Agrachev, P. Lee.
Optimal transportation under nonholonomic constraints, in: Trans. Amer. Math. Soc., 2009, vol. 361, no 11, p. 6019–6047.
http://dx. doi. org/ 10. 1090/ S0002-9947-09-04813-2 -
23A. Agrachev, P. Lee.
Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifold, arXiv, 2011, no arXiv:0903.2550 [math.DG], 3rd version.
http://arxiv. org/ abs/ 0903. 2550 -
24A. Agrachev, Y. L. Sachkov.
Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II. -
25L. Ambrosio, S. Rigot.
Optimal mass transportation in the Heisenberg group, in: J. Funct. Anal., 2004, vol. 208, no 2, p. 261–301.
http://dx. doi. org/ 10. 1016/ S0022-1236(03)00019-3 -
26V. I. Arnold.
Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 2nd, Springer-Verlag, New York, 1989, vol. 60, xvi+508 p, Translated from the Russian by K. Vogtmann and A. Weinstein. -
27Z. Artstein.
Stabilization with relaxed control, in: Nonlinear Analysis TMA, November 1983, vol. 7, no 11, p. 1163-1173. -
28E. Belbruno.
Capture dynamics and chaotic motions in celestial mechanics, Princeton University Press, Princeton, NJ, 2004, xx+211 p. -
29A. Bombrun, J. Chetboun, J.-B. Pomet.
Transferts Terre-Lune en poussée faible par contrôle feedback. La mission Smart-1, Inria, July 2006, no 5955.
http://hal. inria. fr/ inria-00087927 -
30B. Bonnard, J.-B. Caillau.
Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 3, p. 395–411. -
31B. Bonnard, J.-B. Caillau.
Geodesic flow of the averaged controlled Kepler equation, in: Forum Mathematicum, September 2009, vol. 21, no 5, p. 797–814.
http://dx. doi. org/ 10. 1515/ FORUM. 2009. 038 -
32B. Bonnard, J.-B. Caillau, G. Picot.
Geometric and numerical techniques in optimal control of two and three-body problems, in: Commun. Inf. Syst., 2010, vol. 10, no 4, p. 239–278.
http://projecteuclid. org/ getRecord?id=euclid. cis/ 1290608950 -
33B. Bonnard, J.-B. Caillau, L. Rifford.
Convexity of injectivity domains on the ellipsoid of revolution: the oblate case, in: C. R. Math. Acad. Sci. Paris, 2010, vol. 348, no 23-24, p. 1315–1318.
http://dx. doi. org/ 10. 1016/ j. crma. 2010. 10. 036 -
34B. Bonnard, M. Chyba.
Singular trajectories and their role in control theory, Mathématiques & Applications, Springer-Verlag, Berlin, 2003, vol. 40, xvi+357 p. -
35B. Bonnard, N. Shcherbakova, D. Sugny.
The smooth continuation method in optimal control with an application to quantum systems, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 1, p. 267–292.
http://dx. doi. org/ 10. 1051/ cocv/ 2010004 -
36B. Bonnard, D. Sugny.
Time-minimal control of dissipative two-level quantum systems: the integrable case, in: SIAM J. Control Optim., 2009, vol. 48, no 3, p. 1289–1308.
http://dx. doi. org/ 10. 1137/ 080717043 -
37U. Boscain, B. Piccoli.
Optimal syntheses for control systems on 2-D manifolds, Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2004, vol. 43, xiv+261 p. -
38Y. Brenier.
Décomposition polaire et ré-arrangement monotone des champs de vecteurs, in: C. R. Acad. Sci. Paris Sér. I Math., 1987, vol. 305, p. 805-808. -
39Y. Brenier.
Polar factorization and monotone rearrangement of vector-valued functions, in: Comm. Pure Appl. Math., 1991, vol. 44, no 4, p. 375–417.
http://dx. doi. org/ 10. 1002/ cpa. 3160440402 -
40F. Chaplais.
Averaging and deterministic optimal control, in: SIAM J. Control Optim., 1987, vol. 25, no 3, p. 767–780. -
41F. H. Clarke, Y. S. Ledyaev, L. Rifford, R. J. Stern.
Feedback stabilization and Lyapunov functions, in: SIAM J. Control Optim., 2000, vol. 39, no 1, p. 25–48 (electronic).
http://dx. doi. org/ 10. 1137/ S0363012999352297 -
42J. C. Doyle, B. A. Francis, A. R. Tannenbaum.
Feedback control theory, Macmillan Publishing Company, New York, 1992, xii+227 p. -
43L. Faubourg, J.-B. Pomet.
Control Lyapunov functions for homogeneous "Jurdjevic-Quinn” systems, in: ESAIM Control Optim. Calc. Var., 2000, vol. 5, p. 293-311.
http://www. edpsciences. org/ cocv/ -
44L. Faubourg, J.-B. Pomet.
Nonsmooth functions and uniform limits of control Lyapunov functions, in: 41st IEEE Conf. on Decision and Control, Las Vegas (USA), December 2002. -
45A. Figalli, L. Rifford.
Closing Aubry sets, under preparation. -
46A. Figalli, L. Rifford.
Mass transportation on sub-Riemannian manifolds, in: Geom. Funct. Anal., 2010, vol. 20, no 1, p. 124–159.
http://dx. doi. org/ 10. 1007/ s00039-010-0053-z -
47A. Figalli, L. Rifford, C. Villani.
Tangent cut loci on surfaces, in: Differential Geom. Appl., 2011, vol. 29, no 2, p. 154–159. -
48M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples, in: Internat. J. Control, 1995, vol. 61, no 6, p. 1327-1361.
http://dx. doi. org/ 10. 1080/ 00207179508921959 -
49S. Geffroy.
Généralisation des techniques de moyennation en contrôle optimal - Application aux problèmes de rendez-vous orbitaux en poussée faible, Institut National Polytechnique de Toulouse, Toulouse, France, October 1997. -
50A. Hindawi, J.-B. Pomet, L. Rifford.
Mass transportation with LQ cost functions, in: Acta Appl. Math., 2011, vol. 113, no 2, p. 215–229. [ DOI : 10.1007/s10440-010-9595-1 ]
http://hal. archives-ouvertes. fr/ hal-00534083/ -
51A. Isidori.
Nonlinear Control Systems, Comm. in Control Engineering, 3rd, Springer-Verlag, 1995. -
52Z.-P. Jiang, I. M. Mareels, J.-B. Pomet.
Output Feedback Global Stabilization for a Class of Nonlinear Systems with Unmodeled Dynamics, in: Europ. J. Control, 1996, vol. 2, p. 201-210. -
53Z.-P. Jiang, J.-B. Pomet.
Global Stabilization of Parametric Chained-form Systems by Time-varying Dynamic Feedback, in: Int. J. of Adaptive Control and Signal Processing, 1996, vol. 10, p. 47-59. -
54N. Juillet.
Geometric inequalities and generalized Ricci bounds in the Heisenberg group, in: Int. Math. Res. Not. IMRN, 2009, vol. 13, p. 2347–2373. -
55V. Jurdjevic.
Non-Euclidean elastica, in: Amer. J. Math., 1995, vol. 117, no 1, p. 93–124.
http://dx. doi. org/ 10. 2307/ 2375037 -
56T. Kailath.
Linear systems, Information and System Sciences, Prentice-Hall Inc., Englewood Cliffs, N.J., 1980. -
57L. V. Kantorovich.
On a problem of Monge, in: Uspekhi mat. Nauka, 1948, vol. 3, p. 225–226, English translation in J. Math. Sci. (N. Y.) 133 (2006), 1383–1383.
http://dx. doi. org/ 10. 1007/ s10958-006-0050-9 -
58W. Klingenberg.
Lectures on closed geodesics, Springer-Verlag, Berlin, 1978, x+227 p, Grundlehren der Mathematischen Wissenschaften, Vol. 230. -
59W. Klingenberg, F. Takens.
Generic properties of geodesic flows, in: Math. Ann., 1972, vol. 197, p. 323–334. -
60E. B. Lee, L. Markus.
Foundations of optimal control theory, John Wiley & Sons Inc., New York, 1967. -
61J. Lott, C. Villani.
Ricci curvature for metric-measure spaces via optimal transport, in: Ann. of Math. (2), 2009, vol. 169, no 3, p. 903–991.
http://dx. doi. org/ 10. 4007/ annals. 2009. 169. 903 -
62J. E. Marsden, S. D. Ross.
New methods in celestial mechanics and mission design, in: Bull. Amer. Math. Soc. (N.S.), 2006, vol. 43, no 1, p. 43–73 (electronic).
http://dx. doi. org/ 10. 1090/ S0273-0979-05-01085-2 -
63P. Martin, R. M. Murray, P. Rouchon.
Flat systems, in: Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes, VIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, p. 705–768 (electronic).
http://users. ictp. it/ ~pub_off/ lectures/ lns008/ Rouchon/ Rouchon. pdf -
64R. J. McCann.
Polar factorization of maps on Riemannian manifolds, in: Geom. Funct. Anal., 2001, vol. 11, no 3, p. 589–608.
http://dx. doi. org/ 10. 1007/ PL00001679 -
65G. Monge.
Mémoire sur la théorie des déblais et des remblais, in: Histoire de l'Académie Royale des Sciences, 1781, p. 666-704.
http://gallica. bnf. fr/ ark:/ 12148/ bpt6k35800. image. f796 -
66J.-M. Morel, F. Santambrogio.
Comparison of distances between measures, in: Appl. Math. Lett., 2007, vol. 20, no 4, p. 427–432.
http://dx. doi. org/ 10. 1016/ j. aml. 2006. 05. 009 -
67P. Morin, J.-B. Pomet, C. Samson.
Design of Homogeneous Time-Varying Stabilizing Control Laws for Driftless Controllable Systems Via Oscillatory Approximation of Lie Brackets in Closed Loop, in: SIAM J. Control Optim., 1999, vol. 38, no 1, p. 22-49.
http://dx. doi. org/ 10. 1137/ S0363012997315427 -
68P. Morin, C. Samson, J.-B. Pomet, Z.-P. Jiang.
Time-varying Feedback Stabilization of the Attitude of a Rigid Spacecraft with two controls, in: Syst. & Control Lett., 1995, vol. 25, p. 375-385. -
69Q. Mérigot.
Détection de structure géométrique dans les nuages de points, Univ. de Nice Sophia Antipolis, 2009.
http://tel. archives-ouvertes. fr/ tel-00443038/ -
70J.-B. Pomet, R. M. Hirshorn, W. A. Cebuhar.
Dynamic Output Feedback Regulation for a class of nonlinear systems, in: Math. of Control, Signals and Systems, 1993, vol. 6, no 2, p. 106-124. -
71J.-B. Pomet.
Explicit Design of Time-Varying Stabilizing Control Laws for a Class of Controllable Systems without Drift, in: Syst. & Control Lett., 1992, vol. 18, p. 147-158. -
72L. S. Pontryagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, E. Mitchenko.
Théorie mathématique des processus optimaux, Editions MIR, Moscou, 1974. -
73G. e. a. Racca.
SMART-1 mission descriptioin and development status, in: Planetary and space science, 2002, vol. 50, p. 1323-1337. -
74L. Rifford.
Existence of Lipschitz and semiconcave control-Lyapunov functions, in: SIAM J. Control Optim., 2000, vol. 39, no 4, p. 1043–1064 (electronic).
http://dx. doi. org/ 10. 1137/ S0363012999356039 -
75L. Rifford.
On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients, in: ESAIM Control Optim. Calc. Var., 2001, vol. 6, p. 593–611 (electronic).
http://dx. doi. org/ 10. 1051/ cocv:2001124 -
76L. Rifford.
Range of the gradient of a smooth bump function in finite dimensions, in: Proc. Amer. Math. Soc., 2003, vol. 131, no 10, p. 3063–3066 (electronic).
http://dx. doi. org/ 10. 1090/ S0002-9939-03-07078-3 -
77L. Rifford.
On the existence of local smooth repulsive stabilizing feedbacks in dimension three, in: J. Differential Equations, 2006, vol. 226, no 2, p. 429–500.
http://dx. doi. org/ 10. 1016/ j. jde. 2005. 10. 017 -
78J. A. Sanders, F. Verhulst.
Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag, 1985, vol. 56. -
79K.-T. Sturm.
On the geometry of metric measure spaces. I, in: Acta Math., 2006, vol. 196, no 1, p. 65–131.
http://dx. doi. org/ 10. 1007/ s11511-006-0002-8 -
80K.-T. Sturm.
On the geometry of metric measure spaces. II, in: Acta Math., 2006, vol. 196, no 1, p. 133–177.
http://dx. doi. org/ 10. 1007/ s11511-006-0003-7