Major publications by the team in recent years Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 11P. Glanc.

    Approximation numérique de l'équation de Vlasov par des méthodes de type remapping conservatif, Université de Strasbourg, January 2014.

  • 12M. Lutz.

    Etude mathematique et numerique d'un modèle gyrocinetique incluant des effets electromagnetiques pour la simulation d'un plasma de Tokamak, Université de Strasbourg, October 2013.


Articles in International Peer-Reviewed Journals

  • 13C. Bardos, N. Besse.

    The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits, in: Kinetic and related models, 2013, vol. 6, pp. 893-917. [ DOI : 10.3934/krm.2013.6.893 ]

  • 14M. Bergot, M. Duruflé.

    Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra, in: Communications in Computational Physics, 2013, vol. 14, no 5, pp. 1372-1414.

  • 15M. Bergot, M. Duruflé.

    High-Order Optimal Edge Elements for Pyramids, Prisms and Hexahedra, in: Journal of Computational Physics, January 2013, vol. 232, no 1, pp. 189-213. [ DOI : 10.1016/j.jcp.2012.08.005 ]

  • 16J.-P. Bernard, E. Frénod, A. Rousseau.

    Modeling confinement in Etang de Thau: numerical simulations and multi-scale aspects, in: Dynamical Systems and Differential Equations, DCDS Supplement, November 2013, vol. 2013, pp. 69-76.

  • 17J.-P. Bernard, E. Frénod, A. Rousseau.

    Paralic confinement computations in coastal environment with interlocked areas, in: Discrete and Continuous Dynamical Systems - Series S, May 2014, 10 p.

  • 18H. Berninger, E. Frénod, M. Gander, M. Liebendorfer, J. Michaud.

    Derivation of the Isotropic Diffusion Source Approximation (IDSA) for Supernova Neutrino Transport by Asymptotic Expansions, in: SIAM Journal on Mathematical Analysis, December 2013, vol. 45, no 6, pp. 3229-3265.

  • 19A. Canelas, J. R. Roche.

    Topology optimization in electromagnetic casting via quadratic programming, in: Inverse Problems in Science and Engineering, April 2013. [ DOI : 10.1080/17415977.2013.788173 ]

    http://hal.inria.fr/hal-00909126, http://dx.doi.org/10.1080/17415977.2013.788173
  • 20D. Coulette, N. Besse.

    Multi-water-bag models of ion temperature gradient instability in cylindrical geometry, in: Phys. Plasmas, 2013, vol. 20. [ DOI : 10.1063/1.4804272 ]

  • 21D. Coulette, N. Besse.

    Numerical comparisons of gyrokinetic multi-water-bag models, in: Journal of Computational Physics, 2013, vol. 248, pp. 1-32. [ DOI : 10.1016/j.jcp.2013.03.065 ]

  • 22A. Crestetto, P. Helluy, J. Jung.

    Numerical resolution of conservation laws with OpenCL, in: ESAIM: Proceedings, July 2013, vol. 40, pp. 51-62. [ DOI : 10.1051/proc/201340004 ]

  • 23N. Crouseilles, E. Frénod, S. Hirstoaga, A. Mouton.

    Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field, in: Mathematical Models and Methods in Applied Sciences, 2013, vol. 23, no 08, pp. 1527–1559. [ DOI : 10.1142/S0218202513500152. ]

  • 24E. Frénod.

    Un exemple d'application des mathématiques à l'environnement littoral : La dynamique à long terme des dunes marines dans les zones soumises à la marée. Modélisation, Analyse, Homogénéisation et Simulation, in: Matapli, March 2013, pp. 129 –140.

  • 25E. Frénod, A. Rousseau.

    Paralic confinement: models and simulations, in: Acta Applicandae Mathematicae, February 2013, vol. 123, no 1, pp. 1-19. [ DOI : 10.1007/s10440-012-9706-2 ]

  • 26M. Ghattassi.

    Higher Order Continuous and Discontinuous Galerkin Methods for solving combined Conductive and Radiative Heat Transfer, in: International Journal for Numerical Methods in Engineering, 2013, preprint.

  • 27P. Helluy, J. Jung.

    OpenCL numerical simulations of two-fluid compressible flows with a 2D random choice method, in: International Journal on Finite Volumes, July 2013, vol. 10, pp. 1-38.

  • 28P. Helluy, N. Pham, A. Crestetto.

    Space-only hyperbolic approximation of the Vlasov equation, in: ESAIM: Proceedings, December 2013, vol. 43, pp. 17-36. [ DOI : 10.1051/proc/201343002 ]

  • 29D. Moulton, W. Fundamenski, G. Manfredi, S. A. Hirstoaga, D. Tskhakaya.

    Comparison of free-streaming ELM formulae to a Vlasov simulation, in: Journal of Nuclear Materials, 2013, vol. 438, Supplement, pp. S633-S637.


International Conferences with Proceedings

  • 30A. Crestetto, P. Helluy.

    Resolution of the Vlasov-Maxwell system by PIC Discontinuous Galerkin method on GPU with OpenCL, in: CEMRACS'11, France, 2013, vol. 38, pp. 257–274. [ DOI : 10.1051/proc/201238014 ]


Conferences without Proceedings

  • 31T. Hattori, S. Labrunie, J. R. Roche, P. Bertrand.

    Domain decomposition for Full-Waves Simulation in Cold Plasma, in: WAVES 2013, Tunis, Tunisia, June 2013.


Internal Reports

Other Publications

References in notes
  • 49M. Aroztegui, J. Herskovits, J. R. Roche.

    A feasible direction interior point algorithm for nonlinear semidefinite programming, November 2012.

  • 50F. Assous, P. Ciarlet, S. Labrunie.

    Theoretical tools to solve the axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2002, vol. 25, pp. 49–78.
  • 51F. Assous, P. Ciarlet, S. Labrunie.

    Solution of axisymmetric Maxwell equations, in: Math. Meth. Appl. Sci., 2003, vol. 26, pp. 861–896.
  • 52F. Assous, P. Ciarlet, S. Labrunie, J. Segré.

    Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: The Singular Complement Method, in: J. Comp. Phys., 2003, vol. 191, pp. 147–176.
  • 53F. Assous, P. Ciarlet, J. Segré.

    Numerical solution to the time dependent Maxwell equations in two dimensional singular domains: the Singular Complement Method, in: J. Comput. Phys., 2000, vol. 161, pp. 218–249.
  • 54F. Assous, P. Ciarlet, E. Sonnendrücker.

    Resolution of the Maxwell equations in a domain with reentrant corners, in: M  2 AN, 1998, vol. 32, pp. 359–389.
  • 55C. Bardos, P. Degond.

    Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 1985, vol. 2, no 2, pp. 101–118.
  • 56S. Benachour, F. Filbet, P. Laurençot, E. Sonnendrücker.

    Global existence for the Vlasov-Darwin system in 3 for small initial data, in: Math. Methods Appl. Sci., 2003, vol. 26, no 4, pp. 297–319.
  • 57C. Bernardi, M. Dauge, Y. Maday.

    Spectral methods for axisymmetric domains, Series in Applied Mathematics, Gauthier-Villars, Paris and North Holland, Amsterdam, 1999.
  • 58C. Birdsall, A. Langdon.

    Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.
  • 59Y. Brenier.

    Convergence of the Vlasov-Poisson system to the incompressible Euler equations, in: Comm. Partial Differential Equations, 2000, vol. 25, no 3-4, pp. 737–754.
  • 60A. Canelas, J. R. Roche.

    Topology Optimization in Electromagnetic Casting via quadratic programming, Nov 2012.

  • 61A. Canelas, J. R. Roche, J. Herskovits.

    Shape optimization for inverse electromagnetic casting problems, in: Inverse Problems in Science and Engineering, 2012, vol. 20, no 7, pp. 951-972.

  • 62P. Ciarlet, N. Filonov, S. Labrunie.

    Un résultat de fermeture pour les équations de Maxwell en géométrie axisymétrique, in: C. R. Acad. Sci. Paris série I, 2000, vol. 331, pp. 293–298.
  • 63R. DiPerna, P.-L. Lions.

    Global weak solutions of the Vlasov-Maxwell systems, in: Comm. Pure. Appl. Math., 1989, vol. XLII, pp. 729–757.
  • 64F. Filbet, E. Sonnendrücker, P. Bertrand.

    Conservative numerical schemes for the Vlasov equation, in: J. Comput. Phys., 2001, vol. 172, no 1, pp. 166–187.
  • 65I. Foster, C. Kesselman.

    The Grid, blueprint for a new computing infrastructure, Morgan Kaufmann Publishers, Inc., 1998.
  • 66E. Frénod, E. Sonnendrücker.

    Long time behavior of the Vlasov equation with a strong external magnetic field, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 4, pp. 539–553.
  • 67E. Frénod, E. Sonnendrücker.

    The finite Larmor radius approximation, in: SIAM J. Math. Anal., 2001, vol. 32, no 6, pp. 1227–1247.
  • 68E. Frénod, E. Sonnendrücker.

    Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, in: Asymptot. Anal., 1998, vol. 18, no 3-4, pp. 193–213.
  • 69E. Garcia, S. Labrunie.

    Régularité spatio-temporelle de la solution des équations de Maxwell dans des domaines non-convexes, in: C. R. Acad. Sci. Paris, série I, 2002, vol. 334, pp. 293–298.
  • 70R. T. Glassey.

    The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996, xii+241 p.
  • 71F. Golse, L. Saint-Raymond.

    The Vlasov-Poisson system with strong magnetic field in quasineutral regime, in: Math. Models Methods Appl. Sci., 2003, vol. 13, no 5, pp. 661–714.
  • 72M. Griebel, G. Zumbusch.

    Hash based adaptive parallel multilevel methods with space-filling curves, 2000.
  • 73E. Horst, R. Hunze.

    Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, in: Math. Methods Appl. Sci., 1984, vol. 6, no 2, pp. 262–279.
  • 74M. Parashar, J. C. Browne, C. Edwards, K. Klimkowski.

    A common data management infrastructure for adaptive algorithms for PDE solutions, 1997.
  • 75J. Petri.

    Non-linear evolution of the diocotron instability in a pulsar electrosphere: two-dimensional particle-in-cell simulations, in: Astronomy & Astrophysics, 2009, vol. 503, no 1, pp. 1-12.
  • 76L. Saint-Raymond.

    The gyrokinetic approximation for the Vlasov-Poisson system, in: Math. Models Methods Appl. Sci., 2000, vol. 10, no 9, pp. 1305–1332.
  • 77E. Violard.

    A Semantic Framework To Adress Data Locality in Data Parallel Programs, in: Parallel Computing, 2004, vol. 30, no 1, pp. 139–161.