Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies
DISCO - 2013

Section: Software and Platforms


Participants : Alban Quadrat [correspondent] , Daniel Robertz [Univ. Aachen] .

The Stafford package of OreModules [92] contains an implementation of two constructive versions of Stafford's famous but difficult theorem [124] stating that every ideal over the Weyl algebra An(k) (resp., Bn(k)) of partial differential operators with polynomial (resp., rational) coefficients over a field k of characteristic 0 (e.g., k=, ) can be generated by two generators. Based on this implementation and algorithmic results developed in [119] by the authors of the package, two algorithms which compute bases of free modules over the Weyl algebras An() and Bn() have been implemented. The rest of Stafford's results developed in [124] have recently been made constructive in [121] (e.g., computation of unimodular elements, decomposition of modules, Serre's splitting-off theorem, Stafford's reduction, Bass' cancellation theorem, minimal number of generators) and implemented in the Stafford package. The development of the Stafford package was motivated by applications to linear systems of partial differential equations with polynomial or rational coefficients (e.g., computation of injective parametrization, Monge problem, differential flatness, the reduction and decomposition problems and Serre's reduction problem). To our knowledge, the Stafford package is the only implementation of Stafford's theorems nowadays available. The binary of the package is freely available at .