EN FR
EN FR


Section: New Results

Security

Participants : Nathalie Mitton, Enrico Natalizio.

[19] deals with the energy efficient issue of cryptographic mechanisms used for secure communication between devices in wireless sensor networks. Since these devices are mainly targeted for low power consumption appliances, there is an effort for optimization of any aspects needed for regular sensor operation. On a basis of utilization of hardware cryptographic accelerators integrated in microcontrollers, this article provides the comparison between software and hardware solutions. Proposed work examines the problems and solutions for implementation of security algorithms for WSN devices. Because the speed of hardware accelerator should be much higher than the software implementation, there are examination tests of energy consumption and validation of performance of this feature. Main contribution of the article is real testbed evaluation of the time latency and energy requirements needed for securing the communication. In addition, global evaluation for all important network communication parameters like throughput, delay and delivery ratio are also provided.

The Internet of Things (IoT) will enable objects to become active participants of everyday activities. Introducing objects into the control processes of complex systems makes IoT security very difficult to address. Indeed, the Internet of Things is a complex paradigm in which people interact with the technological ecosystem based on smart objects through complex processes. The interactions of these four IoT components, person, intelligent object, technological ecosystem, and process highlight a systemic and cognitive dimension within security of the IoT. The interaction of people with the technological ecosystem requires the protection of their privacy. Similarly, their interaction with control processes requires the guarantee of their safety. Processes must ensure their reliability and realize the objectives for which they are designed. We believe that the move towards a greater autonomy for objects will bring the security of technologies and processes and the privacy of individuals into sharper focus. Furthermore, in parallel with the increasing autonomy of objects to perceive and act on the environment, IoT security should move towards a greater autonomy in perceiving threats and reacting to attacks, based on a cognitive and systemic approach. In [33] , we will analyze the role of each of the mentioned actors in IoT security and their relationships, in order to highlight the research challenges and present our approach to these issues based on a holistic vision of IoT security.