EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1S. Amari, F. Seyfert, M. Bekheit.

    Theory of Coupled Resonator Microwave Bandpass Filters of Arbitrary Bandwidth, in: Microwave Theory and Techniques, IEEE Transactions on, August 2010, vol. 58, no 8, pp. 2188 -2203.
  • 2B. Atfeh, L. Baratchart, J. Leblond, J. R. Partington.

    Bounded extremal and Cauchy-Laplace problems on the sphere and shell, in: J. Fourier Anal. Appl., 2010, vol. 16, no 2, pp. 177–203, Published online Nov. 2009.

    http://dx.doi.org/10.1007/s00041-009-9110-0
  • 3L. Baratchart, J. Leblond, J.-P. Marmorat.

    Sources identification in 3D balls using meromorphic approximation in 2D disks, in: Electronic Transactions on Numerical Analysis (ETNA), 2006, vol. 25, pp. 41–53.
  • 4L. Baratchart, J. Leblond, S. Rigat, E. Russ.

    Hardy spaces of the conjugate Beltrami equation, in: Journal of Functional Analysis, 2010, vol. 259, no 2, pp. 384-427.

    http://dx.doi.org/10.1016/j.jfa.2010.04.004
  • 5L. Baratchart, F. Mandréa, E. B. Saff, F. Wielonsky.

    2D inverse problems for the Laplacian: a meromorphic approximation approach, in: Journal de Math. Pures et Appliquées, 2008, vol. 86, pp. 1-41.
  • 6L. Baratchart, H. Stahl, M. Yattselev.

    Weighted Extremal Domains and Best Rational Approximation, in: Advances in Mathematics, 2012, vol. 229, pp. 357-407.

    http://hal.inria.fr/hal-00665834
  • 7L. Baratchart, M. Yattselev.

    Padé approximants to certain elliptic-type functions, in: Jour. d'Analyse, 2013, vol. 121, no 1, pp. 31–86.
  • 8R. Cameron, J.-C. Faugère, F. Rouillier, F. Seyfert.

    Exhaustive approach to the coupling matrix synthesis problem and application to the design of high degree asymmetric filters, in: International Journal of RF and Microwave Computer-Aided Engineering, 2007, vol. 17, no 1, pp. 4–12.

    http://hal.inria.fr/hal-00663777
  • 9M. Clerc, J. Leblond, J.-P. Marmorat, T. Papadopoulo.

    Source localization using rational approximation on plane sections, in: Inverse Problems, May 2012, vol. 28, no 5, 24 p.

    http://hal.inria.fr/inria-00613644
  • 10B. Hanzon, M. Olivi, R. L. Peeters.

    Balanced realizations of discrete-time stable all-pass systems and the tangential Schur algorithm, in: Linear Algebra and its Applications, 2006, vol. 418, pp. 793-820.

    http://dx.doi.org/10.1016/j.laa.2006.09.029
  • 11V. Lunot, F. Seyfert, S. Bila, A. Nasser.

    Certified Computation of Optimal Multiband Filtering Functions, in: IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no 1, pp. 105-112.

    http://dx.doi.org/10.1109/TMTT.2007.912234
  • 12J.-P. Marmorat, M. Olivi.

    Nudelman Interpolation, Parametrization of Lossless Functions and balanced realizations, in: Automatica, 2007, vol. 43, pp. 1329–1338.

    http://dx.doi.org/10.1016/j.automatica.2007.01.020
  • 13M. Olivi, F. Seyfert, J.-P. Marmorat.

    Identification of microwave filters by analytic and rational H2 approximation, in: Automatica, January 2013, vol. 49, no 2, pp. 317-325. [ DOI : 10.1016/j.automatica.2012.10.005 ]

    http://hal.inria.fr/hal-00753824
Publications of the year

Articles in International Peer-Reviewed Journals

  • 14L. Baratchart, Y. Fischer, J. Leblond.

    Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation, in: Complex Variables and Elliptic Equations, 2014, 41 p. [ DOI : 10.1080/17476933.2012.755755 ]

    https://hal.archives-ouvertes.fr/hal-00909577
  • 15H. Ezzeddine, K. Frigui, S. Bila, S. Verdeyme, F. Seyfert, J. Puech, L. Estagerie, D. Pacaud.

    Design and implementation of compact diplexers using dual-mode cavities, in: International Journal of RF and Microwave Computer Aided Engineering, 2014, forthcoming. [ DOI : 10.1002/mmce.20760 ]

    https://hal-unilim.archives-ouvertes.fr/hal-00924828
  • 16J. Leblond.

    Identifiability Properties for Inverse Problems in EEG Data Processing and Medical Engineering with Observability and Optimization Issues, in: Acta Applicandae Mathematicae, 2014, 16 p, Proceedings of the Workshop on Control and Observation of Nonlinear Control Systems with Application to Medicine (CONCSAM, Hawaii, 2013). [ DOI : 10.1007/s10440-014-9951-7 ]

    https://hal.archives-ouvertes.fr/hal-00875006
  • 17D. Pacaud, F. Seyfert, H. Ezzeddine, S. Verdeyme, S. Bila, J. Puech, L. Estagerie.

    Optimized Synthesis of Self-Equalized Microwave Filters, in: IEEE Transactions on Microwave Theory and Techniques, July 2014, vol. 62, no 8, 6 p. [ DOI : 10.1109/TMTT.2014.2332135 ]

    https://hal.inria.fr/hal-01096240

International Conferences with Proceedings

  • 18L. Baratchart, M. Olivi, F. Seyfert.

    Generalized Nevanlinna-Pick interpolation on the boundary. Application to impedance matching, in: MTNS-21st Symposium on Mathematical Theory of Networks and Systems, Groninguen, Netherlands, July 2014.

    https://hal.inria.fr/hal-00920564
  • 19F. Seyfert, M. Oldoni, M. Olivi, S. Lefteriu, D. Pacaud.

    Deembedding of filters in multiplexers via rational approximation and interpolation, in: IMS - IEEE International Microwave Symposium, Tampa Bay, Florida, United States, June 2014.

    https://hal.inria.fr/hal-01052718
  • 20F. Seyfert.

    Synthesis of Microwave filters: a novel approach based on computer algebra, in: MTNS-21st Symposium on Mathematical Theory of Networks and Systems, Groningen, Netherlands, July 2014.

    https://hal.archives-ouvertes.fr/hal-01100790

Scientific Books (or Scientific Book chapters)

  • 21M. Oldoni, G. Macchiarella, F. Seyfert.

    Synthesis and Modelling Techniques for Microwave Filters and Diplexers: Advances in Analytical Methods with Applications to Design and Tuning, Scholars’ Press, February 2014.

    https://hal.inria.fr/hal-01096252

Internal Reports

  • 22L. Baratchart, L. Bourgeois, J. Leblond.

    Uniqueness results for 2D inverse Robin problems with bounded coefficient, Inria Sophia Antipolis ; Inria Saclay, January 2015, no RR-8665, Travail relié à la pré-publication du même titre, hal-01084428, November 2014. On présente ici les résultats dans un cadre plus simple et avec des preuves différentes.

    https://hal.inria.fr/hal-01104629
  • 23L. Baratchart, S. Chevillard, F. Seyfert.

    On Transfer Functions Realizable with Active Electronic Components, Inria Sophia Antipolis, December 2014, no RR-8659, 36 p.

    https://hal.inria.fr/hal-01098616
  • 24L. Baratchart, J. Leblond, D. Ponomarev.

    Constrained optimization in classes of analytic functions with prescribed pointwise values, January 2014, no RR-8459.

    https://hal.inria.fr/hal-00938491

Other Publications

  • 25L. Baratchart, L. Bourgeois, J. Leblond.

    Uniqueness results for inverse Robin problems with bounded coefficient, November 2014.

    https://hal.inria.fr/hal-01084428
  • 26L. Baratchart, S. Chevillard, T. Qian.

    Minimax principle and lower bounds in H2-rational approximation, January 2015, Submitted to the special issue of Journal of Approximation Theory / Matematicheskii Sbornik, to the memory of A. A. Gonchar and H. Stahl.

    https://hal.inria.fr/hal-00922815
  • 27S. Chaabi, S. Rigat.

    Decomposition theorem and Riesz basis for axisymmetric potentials in the right half-plane, January 2014.

    https://hal.archives-ouvertes.fr/hal-00940237
  • 28T. Jordanov, J.-P. Marmorat, M. Clerc, J. Leblond, A. waelkens, T. Papadopoulo.

    FindSources3D - Source Localization Using Rational Approximation on Plane Sections, Poster listings, June 2014, Organization Human Brain Mapping, Annual Meeting.

    https://hal.inria.fr/hal-01098108
References in notes
  • 29N. I. Achieser.

    Elements of the Theory of Elliptic Functions, AMS, 1990.
  • 30D. Alpay, L. Baratchart, A. Gombani.

    On the Differential Structure of Matrix-Valued Rational Inner Functions, in: Operator Theory : Advances and Applications, 1994, vol. 73, pp. 30–66.
  • 31J. A. Ball, I. Gohberg, L. Rodman.

    Interpolation of rational matrix functions, Birkhäuser, 1990.
  • 32L. Baratchart.

    A remark on uniqueness of best rational approximants of degree 1 in L2 of the circle, in: Elec. Trans.on Numerical Anal., 2006, vol. 25, pp. 54–66.
  • 33L. Baratchart.

    On the H2 Rational Approximation of Markov Matrix-Valued Functions, in: Proc. 17th Symposium on Mathematical Theory of Networks and Systems (MTNS), Kyoto, Japon, 2006, pp. 180–182.
  • 34L. Baratchart, A. Borichev, S. Chaabi.

    Pseudo-holomorphic functions at the critical exponent, September 2013, Submitted.

    http://hal.inria.fr/hal-00824224
  • 35L. Baratchart, M. Cardelli, M. Olivi.

    Identification and rational L2 approximation: a gradient algorithm, in: Automatica, 1991, vol. 27, pp. 413–418.
  • 36L. Baratchart, M. Chyba, J.-B. Pomet.

    A Grobman-Hartman theorem for control systems, in: J. Dyn. Differential Eqs., 2007, vol. 19, pp. 75-107.
  • 37L. Baratchart, L. Golinskii, S. Kupin.

    Orthogonal rational functions and nonstationary stochastic processes: a Szegő theory, in: Proc. 19th Symposium on Mathematical Theory of Networks and Systems, Budapest, 2010.
  • 38L. Baratchart, D. Hardin, E. A. Lima, E. B. Saff, B. Weiss.

    Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions, in: Inverse Problems, 2013, vol. 29, no 1. [ DOI : 10.1088/0266-5611/29/1/015004 ]

    http://hal.inria.fr/hal-00919261
  • 39L. Baratchart, R. Kuestner, V. Totik.

    Zero distributions via orthogonality, in: Annales de l'Institut Fourier, 2005, vol. 55, no 5, pp. 1455–1499.
  • 40L. Baratchart, S. Kupin, V. Lunot, M. Olivi.

    Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I, in: Journal d'Analyse, 2011, vol. 112, pp. 207-255.

    http://arxiv.org/abs/0812.2050v3
  • 41L. Baratchart, J. Leblond.

    Silent electrical sources in domains of 3, In preparation.
  • 42L. Baratchart, J. Leblond.

    Hardy approximation to Lp functions on subsets of the circle with 1p<, in: Constructive Approximation, 1998, vol. 14, pp. 41–56.
  • 43L. Baratchart, J. Leblond, F. Mandréa, E. B. Saff.

    How can meromorphic approximation help to solve some 2D inverse problems for the Laplacian?, in: Inverse Problems, 1999, vol. 15, no 1, pp. 79–90.

    http://dx.doi.org/10.1088/0266-5611/15/1/012
  • 44L. Baratchart, J. Leblond, J. R. Partington.

    Hardy approximation to L functions on subsets of the circle, in: Constructive Approximation, 1996, vol. 12, pp. 423–435.
  • 45L. Baratchart, J. Leblond, F. Seyfert.

    Extremal problems of mixed type in H2 of the circle, Inria, 2009, no RR-7087.

    http://fr.arxiv.org/abs/0911.1441
  • 46L. Baratchart, F. Mandréa, E. B. Saff, F. Wielonsky.

    2D inverse problems for the Laplacian: a meromorphic approximation approach, in: Journal de Math. Pures et Appliquées, 2008, vol. 86, pp. 1-41.
  • 47L. Baratchart, M. Olivi.

    Index of critical points in l2-approximation, in: System and Control Letters, 1988, vol. 10, pp. 167–174.
  • 48L. Baratchart, M. Olivi.

    Critical points and error rank in best H2 matrix rational approximation of fixed McMillan degree, in: Constructive Approximation, 1998, vol. 14, pp. 273–300.
  • 49L. Baratchart, E. B. Saff, F. Wielonsky.

    A criterion for uniqueness of a critical point in H2 rational approximation, in: Journal d'Analyse, 1996, vol. 70, pp. 225–266.
  • 50L. Baratchart, F. Seyfert.

    An Lp analog to AAK theory for p2, in: Journal of Functional Analysis, 2002, vol. 191, no 1, pp. 52–122.
  • 51L. Baratchart, H. Stahl, F. Wielonsky.

    Asymptotic uniqueness of best rational approximants of given degree to Markov functions in L2 of the circle, in: Constr. Approx., 2001, vol. 17, no 1, pp. 103–138.
  • 52L. Baratchart, M. Yattselev.

    Convergent interpolation to Cauchy integrals over analytic arcs, in: Found. Comp. Math., 2009, vol. 9, no 6, pp. 675–715.
  • 53L. Baratchart, M. Yattselev.

    Meromorphic approximants for complex Cauchy transforms with polar singularities, in: Mat. Sbornik, 2009, vol. 200, no 9, pp. 3-40.
  • 54L. Baratchart, M. Yattselev.

    Asymptotic uniqueness of best rational approximants to complex Cauchy transforms in L2 of the circle, in: Recent trends in orthogonal polynomials and approximation theory, Providence, RI, Contemp. Math., Amer. Math. Soc., 2010, vol. 507, pp. 87–111.
  • 55L. Baratchart, M. Yattselev.

    Convergent Interpolation to Cauchy Integrals over Analytic Arcs with Jacobi-Type Weights, in: International Mathematics Research Notices, 2010, vol. 2010, no 22, pp. 4211–4275.

    http://hal.inria.fr/hal-00508314
  • 56A. Ben Abda, F. Ben Hassen, J. Leblond, M. Mahjoub.

    Sources recovery from boundary data: a model related to electroencephalography, in: Mathematical and Computer Modelling, 2009, vol. 49, no 11–12, pp. 2213–2223.

    http://dx.doi.org/10.1016/j.mcm.2008.07.016
  • 57S. Bila, D. Baillargeat, M. Aubourg, S. Verdeyme, P. Guillon, F. Seyfert, J. Grimm, L. Baratchart, C. Zanchi, J. Sombrin.

    Direct Electromagnetic Optimization of Microwave Filters, in: IEEE Microwave Magazine, 2001, vol. 1, pp. 46–51.
  • 58J. Blum.

    Numerical simulation and optimal control in plasma physics, with applications to Tokamaks, Wiley/Gauthier-Villars, 1989.
  • 59R. Cameron, A. Harish, C. Radcliffe.

    Synthesis of advanced microwave filters without diagonal cross-couplings, in: IEEE Transactions on Microwave Theory and Techniques, dec 2002, vol. 50, no 12, pp. 2862–2872.

    http://dx.doi.org/10.1109/TMTT.2002.805141
  • 60S. Chaabane, I. Fellah, M. Jaoua, J. Leblond.

    Logarithmic stability estimates for a Robin coefficient in 2D Laplace inverse problems, in: Inverse Problems, 2004, vol. 20, no 1, pp. 49–57.

    http://dx.doi.org/10.1088/0266-5611/20/1/003
  • 61S. Chaabi.

    Analyse complexe et problèmes de Dirichlet dans le plan : équation de Weinstein et autres conductivités non bornées, Mathématiques et Informatique de Marseille, 2013.
  • 62R. Coifman, R. Rochberg, G. Weiss.

    Factorization theorems for Hardy spaces in several variables, in: Ann. Math., 1976, vol. 103, pp. 611–635.
  • 63Y. Fischer.

    Approximation des des classes de fonctions analytiques généralisées et résolution de problèmes inverses pour les tokamaks, Univ. Nice Sophia Antipolis, 2011.

    http://tel.archives-ouvertes.fr/tel-00643239/
  • 64A. Friedman, M. Vogelius.

    Determining cracks by boundary measurements, in: Indiana Univ. Math. J., 1989, vol. 38, no 3, pp. 527–556.
  • 65P. Fulcheri, M. Olivi.

    Matrix rational H2-approximation: a gradient algorithm based on Schur analysis, in: SIAM J. on Control & Optim., 1998, vol. 36, pp. 2103–2127.
  • 66J. B. Garnett.

    Bounded analytic functions, Academic Press, 1981.
  • 67T. Georgiou.

    A topological approach to Nevanlinna-Pick interpolation, in: SIAM J. Math. Anal., 1987, vol. 18, no 5, pp. 1248–1260.
  • 68J. Helton, D. Marshall.

    Frequency domain analysis and analytic selections, in: Indiana Univ. Math. J., 1990, vol. 39, no 1, pp. 157–184.
  • 69T. Iwaniec, G. Martin.

    Geometric function theory and non-linear analysis, Oxford Univ. Press, 2001.
  • 70B. Jacob, J. Leblond, J.-P. Marmorat, J. R. Partington.

    A constrained approximation problem arising in parameter identification, in: Linear Algebra and its Applications, 2002, vol. 351-352, pp. 487-500.
  • 71N. Landkhof.

    Foundations of modern potential theory, Springer-Verlag, 1972.
  • 72M. Lavrentiev.

    Some Improperly Posed Problems of Mathematical Physics, Springer, 1967.
  • 73S. Lefteriu, M. Oldoni, M. Olivi, F. Seyfert.

    De-embedding multiplexers by Schur reduction, in: CDC - Conférence on Decision and Control, Florence, Italy, December 2013.

    http://hal.inria.fr/hal-00904794
  • 74H. Orchard, G. Temes.

    Filter Design Using Transformed Variables, in: IEEE Transactions on Circuit Theory, dec 1968, vol. 15, no 4, pp. 385–408.

    http://dx.doi.org/10.1109/TCT.1968.1082870
  • 75V. Peller.

    Hankel Operators and their Applications, Springer, 2003.
  • 76A. Schneck.

    Constrained Hardy space approximation, in: J. Approx. Theory, 2010, vol. 8, pp. 1466–1483.
  • 77I. Schur.

    Über Potenzreihen die im innern des einheitskreises beschränkt sind, in: J. Reine Angew. Math., 1917, vol. 147, pp. 205–232.
  • 78F. Seyfert, L. Baratchart, J.-P. Marmorat, S. Bila, J. Sombrin.

    Extraction of coupling parameters for microwave filters: determinati on of a stable rational model from scattering data, in: 2003 IEEE MTT-S International Microwave Symposium Digest, Philadelphie, États-Unis, IEEE, 2003, vol. 1, pp. 25–28.

    http://hal.inria.fr/hal-00663504
  • 79F. Seyfert, M. Oldoni, G. Macchiarella, D. Pacaud.

    De-embedding response of filters from diplexer measurements, in: International Journal of RF and Microwave Computer-Aided Engineering, August 2012, vol. 23, no 2, pp. 188–199.

    http://hal.inria.fr/hal-00763665
  • 80E. M. Stein.

    Harmonic Analysis, Princeton University Press, 1993.
  • 81P. K. Suetin.

    Polynomials orthogonal over a region and Bieberbach polynomials, Proc. Steklov Inst. Math., 1971, vol. 100, A.M.S. Transl. 1974.
  • 82A. Suàrez, R. Quéré.

    Stability analysis of nonlinear microwave circuits, Artech House, 2003.
  • 83T. Wolff.

    Counterexamples with harmonic gradients in 𝐑3, in: Essays on Fourier analysis in honor of Elias M. Stein, Math. Ser., Princeton Univ. Press, 1995, vol. 42, pp. 321–384.