EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1E. Bayer-Fluckiger, J.-P. Cerri, J. Chaubert.

    Euclidean minima and central division algebras, in: International Journal of Number Theory, 2009, vol. 5, no 7, pp. 1155–1168.

    http://www.worldscinet.com/ijnt/05/0507/S1793042109002614.html
  • 2K. Belabas, M. Bhargava, C. Pomerance.

    Error estimates for the Davenport-Heilbronn theorems, in: Duke Mathematical Journal, 2010, vol. 153, no 1, pp. 173–210.

    http://projecteuclid.org/euclid.dmj/1272480934
  • 3J. Belding, R. Bröker, A. Enge, K. Lauter.

    Computing Hilbert class polynomials, in: Algorithmic Number Theory — ANTS-VIII, Berlin, A. van der Poorten, A. Stein (editors), Lecture Notes in Computer Science, Springer-Verlag, 2007, vol. 5011.

    http://hal.inria.fr/inria-00246115
  • 4J.-P. Cerri.

    Euclidean minima of totally real number fields: algorithmic determination, in: Math. Comp., 2007, vol. 76, no 259, pp. 1547–1575.

    http://www.ams.org/journals/mcom/2007-76-259/S0025-5718-07-01932-1/
  • 5H. Cohen.

    Number Theory I: Tools and Diophantine Equations; II: Analytic and Modern Tool, Graduate Texts in Mathematics, Springer-Verlag, New York, 2007, vol. 239/240.
  • 6H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.

    Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete mathematics and its applications, Chapman & Hall, Boca Raton, 2006.
  • 7J.-M. Couveignes, B. Edixhoven.

    Computational aspects of modular forms and Galois representations, Princeton University Press, 2011.
  • 8A. Enge.

    The complexity of class polynomial computation via floating point approximations, in: Mathematics of Computation, 2009, vol. 78, no 266, pp. 1089–1107.

    http://www.ams.org/mcom/2009-78-266/S0025-5718-08-02200-X/home.html
  • 9A. Enge, P. Gaudry, E. Thomé.

    An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves, in: Journal of Cryptology, 2011, vol. 24, no 1, pp. 24–41.
  • 10D. Lubicz, D. Robert.

    Computing isogenies between abelian varieties, in: Compositio Mathematica, 09 2012, vol. 148, no 05, pp. 1483–1515.

    http://dx.doi.org/10.1112/S0010437X12000243
Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 13K. Belabas, E. Friedman.

    Computing the residue of the Dedekind zeta function, in: Mathematics of Computation, 2015, vol. 84, pp. 357-369, 16 pages.

    https://hal.inria.fr/hal-00916654
  • 14J.-P. Cerri, J. Chaubert, P. Lezowski.

    Totally indefinite Euclidean quaternion fields, in: Acta Arithmetica, 2014, vol. 165, no 2, pp. 181-200.

    https://hal.archives-ouvertes.fr/hal-01016614
  • 15H. Cohen.

    Exact counting of D number fields with given quadratic resolvent, in: Mathematics of Computation, 2014, forthcoming.

    https://hal.archives-ouvertes.fr/hal-01027417
  • 16H. Cohen, F. Thorne.

    Dirichlet series associated to cubic fields with given quadratic resolvent, in: Michigan Mathematical Journal, 2014, vol. 63, pp. 253-273.

    https://hal.inria.fr/hal-00854662
  • 17R. Cosset, D. Robert.

    Computing (l,l)-isogenies in polynomial time on Jacobians of genus 2 curves, in: Mathematics of Computation, November 2014, 23 p, forthcoming. [ DOI : 10.1090/S0025-5718-2014-02899-8 ]

    https://hal.archives-ouvertes.fr/hal-00578991
  • 18J.-M. Couveignes, R. Lercier.

    The geometry of some parameterizations and encodings, in: Advances in mathematics of communications, December 2014, vol. 8, no 4, 22 p. [ DOI : 10.3934/amc.2014.8.437 ]

    https://hal.archives-ouvertes.fr/hal-00870112
  • 19A. Enge, F. Morain.

    Generalised Weber Functions, in: Acta Arithmetica, 2014, vol. 164, no 4, pp. 309-341. [ DOI : 10.4064/aa164-4-1 ]

    https://hal.inria.fr/inria-00385608
  • 20A. Enge, E. Thomé.

    Computing class polynomials for abelian surfaces, in: Experimental Mathematics, 2014, vol. 23, pp. 129-145. [ DOI : 10.1080/10586458.2013.878675 ]

    https://hal.inria.fr/hal-00823745
  • 21P. Lezowski.

    Computation of the Euclidean minimum of algebraic number fields, in: Mathematics of Computation, 2014, vol. 83, pp. 1397-1426, 30 pages, shorter version, with many typos fixed. [ DOI : 10.1090/S0025-5718-2013-02746-9 ]

    https://hal.archives-ouvertes.fr/hal-00632997
  • 22D. Lubicz, D. Robert.

    A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties, in: Journal of Symbolic Computation, 2015, vol. 67, pp. 68-92. [ DOI : 10.1016/j.jsc.2014.08.001 ]

    https://hal.inria.fr/hal-00806923
  • 23A. Page.

    Computing arithmetic Kleinian groups, in: Mathematics of Computation, 2014, 29 p, forthcoming.

    https://hal.archives-ouvertes.fr/hal-00703043

International Conferences with Proceedings

  • 24A. Enge, J. Milan.

    Implementing cryptographic pairings at standard security levels, in: Security, Privacy, and Applied Cryptography Engineering, Pune, India, R. S. Chakraborty, V. Matyas, P. Schaumont (editors), Lecture Notes in Computer Science, Springer, October 2014, vol. 8804, pp. 28-46. [ DOI : 10.1007/978-3-319-12060-7_3 ]

    https://hal.inria.fr/hal-01034213
  • 25A. Page.

    An algorithm for the principal ideal problem in indefinite quaternion algebras, in: ANTS XI, GyeongJu, South Korea, August 2014.

    https://hal.archives-ouvertes.fr/hal-00996346

Other Publications

References in notes
  • 35K. Belabas.

    L'algorithmique de la théorie algébrique des nombres, in: Théorie algorithmique des nombres et équations diophantiennes, N. Berline, A. Plagne, C. Sabbah (editors), 2005, pp. 85–155.
  • 36H. Cohen, P. Stevenhagen.

    Computational class field theory, in: Algorithmic Number Theory — Lattices, Number Fields, Curves and Cryptography, J. Buhler, P. Stevenhagen (editors), MSRI Publications, Cambridge University Press, 2008, vol. 44.
  • 37A. Enge.

    Courbes algébriques et cryptologie, Université Denis Diderot, Paris 7, 2007, Habilitation à diriger des recherches.

    http://tel.archives-ouvertes.fr/tel-00382535/en/
  • 38P. Lezowski.

    Computation of the Euclidean minimum of algebraic number fields, 2011, To appear in Mathematics of Computation, 30 pages.

    http://hal.archives-ouvertes.fr/hal-00632997
  • 39N. Mascot.

    Computing modular Galois representations, in: Rendiconti del Circolo Matematico di Palermo, December 2013, vol. 62, no 3, pp. 451-476. [ DOI : 10.1007/s12215-013-0136-4 ]

    https://hal.archives-ouvertes.fr/hal-00776606