Bibliography
Major publications by the team in recent years
-
1J. Baladron, D. Fasoli, O. Faugeras, J. Touboul.
Mean-field description and propagation of chaos in networks of Hodgkin-Huxley neurons, in: The Journal of Mathematical Neuroscience, 2012, vol. 2, no 1.
http://www.mathematical-neuroscience.com/content/2/1/10 -
2B. Cessac.
A discrete time neural network model with spiking neurons II. Dynamics with noise, in: J. Math. Biol., 2011, vol. 62, pp. 863-900. -
3P. Chossat, O. Faugeras.
Hyperbolic planforms in relation to visual edges and textures perception, in: Plos Comput Biol, December 2009, vol. 5, no 12, e1000625.
http://dx.doi.org/doi:10.1371/journal.pcbi.1000625 -
4R. Cofre, B. Cessac.
Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses, in: Chaos, Solitons and Fractals, 2012, submitted.
http://lanl.arxiv.org/abs/1212.3577 -
5R. Cofre, B. Cessac.
Exact computation of the Maximum Entropy Potential of spiking neural networksmodels, in: Physical Reviev E, 2014, vol. 89, no 052117, 13 p.
https://hal.inria.fr/hal-01095599 -
6O. Faugeras, F. Grimbert, J.-J. Slotine.
Abolute stability and complete synchronization in a class of neural fields models, in: SIAM journal of applied mathematics, September 2008, vol. 61, no 1, pp. 205–250. -
7O. Faugeras, J. Touboul, B. Cessac.
A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs, in: Frontiers in Computational Neuroscience, 2009, vol. 3, no 1. [ DOI : 10.3389/neuro.10.001.2010 ]
http://arxiv.org/abs/0808.1113 -
8J. Naudé, B. Cessac, H. Berry, B. Delord.
Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks, in: Journal of Neuroscience, 2013, vol. 33, no 38, pp. 15032-15043. [ DOI : 10.1523/JNEUROSCI.0870-13.2013 ]
https://hal.inria.fr/hal-00844218 -
9E. Tlapale, G. S. Masson, P. Kornprobst.
Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism, in: Vision Research, August 2010, vol. 50, no 17, pp. 1676–1692.
http://dx.doi.org/10.1016/j.visres.2010.05.022 -
10J. Touboul, O. Faugeras.
A Markovian event-based framework for stochastic spiking neural networks, in: Journal of Computational Neuroscience, April 2011, vol. 30.
http://www.springerlink.com/content/81736mn03j2221m7/fulltext.pdf -
11R. Veltz, O. Faugeras.
Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations, in: SIAM Journal on Applied Dynamical Systems, August 2010, vol. 9, no 3, pp. 954–998. [ DOI : 10.1137/090773611 ]
http://arxiv.org/abs/0910.2247 -
12R. Veltz, O. Faugeras.
A center manifold result for delayed neural fields equations, in: SIAM Journal on Applied Mathematics (under revision), July 2012, RR-8020.
http://hal.inria.fr/hal-00719794 -
13R. Veltz.
Nonlinear analysis methods in neural field models, Université Paris Est, 2011.
ftp://ftp-sop.inria.fr/neuromathcomp/publications/phds/veltz-11.pdf -
14A. Wohrer, P. Kornprobst.
Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4.
Doctoral Dissertations and Habilitation Theses
-
15R. Cofre.
Neuronal Networks, Spike Trains Statistics and Gibbs Distributions, Université de Nice Sophia Antipolis, November 2014.
https://hal.inria.fr/tel-01095575 -
16H. Nasser.
Analysis of large scale spiking networks dynamics with spatio-temporal constraints : application to multi-electrodes acquisitions in the retina, Université Nice Sophia Antipolis, March 2014.
https://tel.archives-ouvertes.fr/tel-00990744
Articles in International Peer-Reviewed Journals
-
17J. Barré, R. Chétrite, M. Muratori, F. Peruani.
Motility-Induced Phase Separation of Active Particles in the Presence of Velocity Alignment, in: Journal of Statistical Physics, 2014, 15 p. [ DOI : 10.1007/s10955-014-1008-9 ]
https://hal.archives-ouvertes.fr/hal-01086368 -
18R. Cofre, B. Cessac.
Exact computation of the Maximum Entropy Potential of spiking neural networksmodels, in: Physical Reviev E, 2014, vol. 89, no 052117, 13 p.
https://hal.inria.fr/hal-01095599 -
19O. Faugeras, J. Inglis.
Stochastic neural field equations: A rigorous footing, in: Journal of Mathematical Biology, July 2014, 40 p.
https://hal.inria.fr/hal-00907555 -
20O. Faugeras, J. Maclaurin.
A Large Deviation Principle and an Expression of the Rate Function for a Discrete Stationary Gaussian Process, in: Entropy, 2014, 21 p. [ DOI : 10.3390/e16126722 ]
https://hal.inria.fr/hal-01096758 -
21O. Faugeras, J. Maclaurin.
A representation of the relative entropy with respect to a diffusion process in terms of its infinitesimal-generator, in: Entropy, 2014, vol. 16, 17 p. [ DOI : 10.3390/e16126705 ]
https://hal.inria.fr/hal-01096777 -
22O. Faugeras, J. Maclaurin.
Asymptotic description of stochastic neural networks. I. Existence of a large deviation principle, in: Comptes Rendus de l'Academie des Sciences. Serie 1, Mathematique, October 2014, vol. 352, pp. 841 - 846. [ DOI : 10.1016/j.crma.2014.08.018 ]
https://hal.inria.fr/hal-01074827 -
23O. Faugeras, J. Maclaurin.
Asymptotic description of stochastic neural networks. II. Characterization of the limit law, in: Comptes Rendus de l'Academie des Sciences. Serie 1, Mathematique, October 2014, vol. 352, pp. 847 - 852. [ DOI : 10.1016/j.crma.2014.08.017 ]
https://hal.inria.fr/hal-01074836 -
24T. Masquelier, G. Portelli, P. Kornprobst.
Microsaccades enable efficient synchrony-based visual feature learning and detection, in: BMC Neuroscience, 2014, vol. 15, no Suppl 1, P121.
https://hal.inria.fr/hal-01026508 -
25H. Nasser, B. Cessac.
Parameter Estimation for Spatio-Temporal Maximum Entropy Distributions: Application to Neural Spike Trains, in: Entropy, April 2014, vol. 16, no 4, pp. 2244-2277. [ DOI : 10.3390/e16042244 ]
https://hal.inria.fr/hal-01096213 -
26G. Portelli, J. Barrett, E. Sernagor, T. Masquelier, P. Kornprobst.
Rapid neural coding in the mouse retina with the first wave of spikes, in: BMC Neuroscience, 2014, vol. 15, no Suppl 1, P120.
https://hal.inria.fr/hal-01026507
Invited Conferences
-
27B. Cessac.
De la rétine à la physique statistique, in: 4 ème journée de la physique niçoise, Sophia Antipolis, France, June 2014.
https://hal.inria.fr/hal-01095605 -
28B. Cessac.
Neural Networks Dynamics, in: LACONEU 2014, Valparaiso, Chile, January 2014.
https://hal.inria.fr/hal-01095600 -
29B. Cessac.
Spike train statistics: from mathematical models to software to experiments, in: 6th Workshop in Computational Neuroscience in Marseille, Marseille, France, March 2014.
https://hal.inria.fr/hal-01095746 -
30B. Cessac, R. Cofre.
Statistical analysis of spike trains in neuronal networks, in: MATHSTATNEURO Workshop, Copenhague, Denmark, June 2014.
https://hal.inria.fr/hal-01095606 -
31J. Naudé, B. Cessac, H. Berry, B. Delord.
Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks, in: LACONEU 2014, Valparaiso, Chile, January 2014, vol. 33. [ DOI : 10.1523/JNEUROSCI.0870-13.2013 ]
https://hal.inria.fr/hal-01095601
Internal Reports
-
32O. Faugeras, J. Maclaurin.
Asymptotic description of neural networks with correlated synaptic weights, March 2014, no RR-8495, 47 p.
https://hal.inria.fr/hal-00955770 -
33H. Nasser, B. Cessac.
Parameters estimation for spatio-temporal maximum entropy distributions: application to neural spike trains, January 2014.
https://hal.inria.fr/hal-00927080 -
34G. Portelli, J. Barrett, E. Sernagor, T. Masquelier, P. Kornprobst.
The wave of first spikes provides robust spatial cues for retinal information processing, July 2014, no RR-8559.
https://hal.inria.fr/hal-01019953 -
35F. Solari, M. Chessa, K. Medathati, P. Kornprobst.
What can we expect from a classical V1-MT feedforward architecture for optical flow estimation?, Inria Sophia Antipolis ; University of Genoa - DIBRIS, Italy, October 2014, no RR-8618, 22 p.
https://hal.inria.fr/hal-01078117 -
36R. Veltz, P. Chossat, O. Faugeras.
On the effects on cortical spontaneous activity of the symmetries of the network of pinwheels in visual area V1, Inria Sophia Antipolis, 2014.
https://hal.inria.fr/hal-01079055 -
37R. Veltz, O. Faugeras.
ERRATUM: A center manifold result for delayed neural fields equations, Inria Sophia Antipolis, 2014.
https://hal.inria.fr/hal-01096598 -
38R. Veltz, T. J. Sejnowski.
Periodic forcing of stabilized E-I networks: Nonlinear resonance curves and dynamics, Inria Sophia Antipolis, 2014.
https://hal.inria.fr/hal-01096590
Other Publications
-
39P. Beltrame, P. Chossat.
Onset of intermittent octahedral patterns in spherical Bénard convection, February 2014.
https://hal-univ-avignon.archives-ouvertes.fr/hal-00945597 -
40M. Bossy, O. Faugeras, D. Talay.
Clarification and complement to "Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons", December 2014.
https://hal.inria.fr/hal-01098582 -
41P. Bressloff, O. Faugeras.
On the Hamiltonian structure of large deviations in stochastic hybrid systems, October 2014.
https://hal.inria.fr/hal-01072077 -
42B. Cessac.
Mean-Field Models in neuroscience, May 2014.
https://hal.inria.fr/cel-01095603 -
43P. Chossat, M. Krupa.
Heteroclinic cycles in Hopfield networks, December 2014.
https://hal.inria.fr/hal-01096505 -
44R. Cofre, B. Cessac.
Can We Hear the Shape of a Maximum Entropy Potential From Spike Trains?, September 2014, Bernstein Conference 2015 .
https://hal.inria.fr/hal-01095760 -
45R. Cofre, B. Cessac.
Exact computation of the Maximum Entropy Potential of spiking neural networks models, May 2014.
https://hal.inria.fr/hal-00861397 -
46F. Delarue, J. Inglis, S. Rubenthaler, E. Tanré.
Particle systems with a singular mean-field self-excitation. Application to neuronal networks, June 2014.
https://hal.inria.fr/hal-01001716 -
47O. Faugeras, J. Maclaurin.
Large Deviations of an Ergodic Synchronous Neural Network with Learning, April 2014.
https://hal.inria.fr/hal-01100020 -
48R. Herzog, J. Araya, M. Pizarro, B. Cessac, C. Ravello, M.-J. Escobar, A. Palacios.
From Habitat to Retina: Neural Population Coding using Natural Movies, September 2014, Bernstein Conference 2015.
https://hal.inria.fr/hal-01095781 -
49J. Inglis, D. Talay.
Mean-field limit of a stochastic particle system smoothly interacting through threshold hitting-times and applications to neural networks with dendritic component, January 2015.
https://hal.inria.fr/hal-01069398 -
50G. Lombardi.
Statistical analysis of spike trains under variation of synaptic weights in neuronal networks, Scuola di Ingegneria dell'Informazione: Politecnico di Milano, January 2014, 91 p.
https://hal.inria.fr/hal-00954694
-
51A. Alahi, R. Ortiz, P. Vandergheynst.
Freak: Fast retina keypoint, in: CVPR, 2012, 510—517 p. -
52J. Bouecke, E. Tlapale, P. Kornprobst, H. Neumann.
Neural Mechanisms of Motion Detection, Integration, and Segregation: From Biology to Artificial Image Processing Systems, in: EURASIP Journal on Advances in Signal Processing, 2011, vol. 2011, special issue on Biologically inspired signal processing: Analysis, algorithms, and applications. [ DOI : 10.1155/2011/781561 ]
http://asp.eurasipjournals.com/content/2011/1/781561 -
53B. Cessac.
A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics, in: J. Math. Biol., 2008, vol. 56, pp. 311-345. -
54B. Cessac.
Statistics of spike trains in conductance-based neural networks: Rigorous results, in: The Journal of Mathematical Neuroscience, 2011, vol. 1, no 8, pp. 1-42. [ DOI : 10.1186/2190-8567-1-8 ]
http://www.mathematical-neuroscience.com/content/1/1/8 -
55B. Cessac, R. Cofre.
Spike train statistics and Gibbs distributions, in: Journal of Physiology - Paris, 2013, vol. 107, no 5, pp. 360-368.
https://hal.inria.fr/hal-00850155 -
56B. Cessac, H. Rostro-Gonzalez, J.-C. Vasquez, T. Viéville.
How Gibbs distribution may naturally arise from synaptic adaptation mechanisms: a model based argumentation, in: J. Stat. Phys,, 2009, vol. 136, no 3, pp. 565-602. [ DOI : 10.1007/s10955-009-9786-1 ]
http://lanl.arxiv.org/abs/0812.3899 -
57B. Cessac, T. Viéville.
On Dynamics of Integrate-and-Fire Neural Networks with Adaptive Conductances, in: Frontiers in neuroscience, July 2008, vol. 2, no 2.
https://hal.inria.fr/inria-00338369 -
58E. J. Chichilnisky.
A simple white noise analysis of neuronal light responses, in: Network: Comput. Neural Syst., 2001, vol. 12, pp. 199–213. -
59R. Engbert, K. Mergenthaler, P. Sinn, A. Pikovsky.
An integrated model of fixational eye movements and microsaccades, in: Proc Natl Acad Sci USA, 2011, vol. 108, pp. 765–770. -
60M.-J. Escobar, P. Kornprobst.
Action recognition via bio-inspired features: The richness of center-surround interaction, in: Computer Vision and Image Understanding, 2012, vol. 116, no 5, 593—605 p.
http://hal.inria.fr/hal-00849935 -
61M.-J. Escobar, G. S. Masson, T. Viéville, P. Kornprobst.
Action Recognition Using a Bio-Inspired Feedforward Spiking Network, in: International Journal of Computer Vision, 2009, vol. 82, no 3, 284 p.
ftp://ftp-sop.inria.fr/neuromathcomp/publications/2009/escobar-masson-etal:09.pdf -
62P. Foldiak.
Stimulus optimization in primary visual cortex, in: Neurocomputing, 2001, vol. 38, pp. 1217–1222. -
63M. Galtier, O. Faugeras, P. Bressloff.
Hebbian Learning of Recurrent Connections: A Geometrical Perspective, in: Neural Computation, September 2012, vol. 24, no 9, pp. 2346-2383. -
64M. Galtier, G. Wainrib.
Multiscale analysis of slow-fast neuronal learning models with noise, in: Journal of Mathematical Neuroscience, 2012, vol. 2, no 13.
http://www.mathematical-neuroscience.com/content/2/1/13/abstract -
65M. Gilson, T. Masquelier, E. Hugues.
STDP allows fast rate-modulated coding with Poisson-like spike trains, in: PLoS Comput Biol, 2011. -
66T. Gollisch, M. Meister.
Rapid Neural Coding in the Retina with Relative Spike Latencies, in: Science, 2008, vol. 319, pp. 1108–1111, DOI: 10.1126/science.1149639. -
67B. H. Jansen, V. G. Rit.
Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns, in: Biological Cybernetics, 1995, vol. 73, pp. 357–366. -
68D. MacKay.
Information-based objective functions for active data selection, in: Neural computation, 1992, vol. 4, no 4, pp. 590–604. -
69C. K. Machens.
Adaptive sampling by information maximization, in: Physical Review Letters, 2002, vol. 88, no 22. -
70S. Martinez-Conde, J. Otero-Millan, S. L. Macknik.
The impact of microsaccades on vision: towards a unified theory of saccadic function, in: Nature Reviews Neuroscience, February 2013, vol. 14, no 2, pp. 83–96. -
71K. Masmoudi, M. Antonini, P. Kornprobst.
Frames for Exact Inversion of the Rank Order Coder, in: IEEE Transactions on Neural Networks and Learning Systems, 2012, vol. 23, no 2, pp. 353–359.
http://dx.doi.org/10.1109/TNNLS.2011.2179557 -
72K. Masmoudi, M. Antonini, P. Kornprobst.
Streaming an image through the eye: The retina seen as a dithered scalable image coder, in: Signal Processing-Image Communication, 2012.
http://dx.doi.org/10.1016/j.image.2012.07.005 -
73T. Masquelier, R. Guyonneau, S. Thorpe.
Competitive STDP-Based Spike Pattern Learning, in: Neural Comput, 2009, vol. 21, pp. 1259–1276. -
74T. Masquelier.
Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model, in: Journal of Computational Neuroscience, 2011.
http://dx.doi.org/10.1007/s10827-011-0361-9 -
75L. Paninski.
Convergence properties of three spike-triggered analysis techniques, in: Network: Comput. Neural Syst., 2003, vol. 14, 437—464 p. -
76J. Rankin, E. Tlapale, R. Veltz, O. Faugeras, P. Kornprobst.
Bifurcation analysis applied to a model of motion integration with a multistable stimulus, in: Journal of Computational Neuroscience, 2013, vol. 34, no 1, pp. 103-124, 10.1007/s10827-012-0409-5. [ DOI : 10.1007/s10827-012-0409-5 ]
https://hal.inria.fr/hal-00845593 -
77B. Siri, H. Berry, B. Cessac, B. Delord, M. Quoy.
Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons, in: Journal of Physiology-Paris, 2007. -
78B. Siri, H. Berry, B. Cessac, B. Delord, M. Quoy.
A Mathematical Analysis of the Effects of Hebbian Learning Rules on the Dynamics and Structure of Discrete-Time Random Recurrent Neural Networks, in: Neural Computation, December 2008, vol. 20, no 12, 12 p. -
79E. Tlapale, P. Kornprobst, G. S. Masson, O. Faugeras.
A Neural Field Model for Motion Estimation, in: Mathematical Image Processing, S. Verlag (editor), Springer Proceedings in Mathematics, 2011, vol. 5, pp. 159–180.
http://dx.doi.org/10.1007/978-3-642-19604-1 -
80E. Tlapale.
Modelling the dynamics of contextual motion integration in the primate, Université Nice Sophia Antipolis, January 2011.
ftp://ftp-sop.inria.fr/neuromathcomp/publications/phds/tlapale-11.pdf -
81J. Touboul, F. Wendling, P. Chauvel, O. Faugeras.
Neural Mass Activity, Bifurcations, and Epilepsy, in: Neural Computation, December 2011, vol. 23, no 12, pp. 3232–3286. -
82R. Veltz, O. Faugeras.
A Center Manifold Result for Delayed Neural Fields Equations, in: SIAM Journal on Mathematical Analysis, 2013, vol. 45, no 3, pp. 1527-1562. [ DOI : 10.1137/110856162 ]
https://hal.inria.fr/hal-00850382 -
83R. Veltz, O. Faugeras.
A Center Manifold Result for Delayed Neural Fields Equations, in: SIAM Journal on Mathematical Analysis, 2013, vol. 45, no 3, pp. 1527-562. -
84A. Wohrer, P. Kornprobst.
Virtual Retina : A biological retina model and simulator, with contrast gain control, in: Journal of Computational Neuroscience, 2009, vol. 26, no 2, 219 p, DOI 10.1007/s10827-008-0108-4. -
85A. Wohrer.
Model and large-scale simulator of a biological retina with contrast gain control, University of Nice Sophia-Antipolis, 2008.