EN FR
EN FR
Research Program
Bibliography
Research Program
Bibliography


Bibliography

Major publications by the team in recent years
  • 1A. Aggarwal, R. M. Colombo, P. Goatin.

    Nonlocal systems of conservation laws in several space dimensions, in: SIAM Journal on Numerical Analysis, 2015, vol. 52, no 2, pp. 963-983.

    https://hal.inria.fr/hal-01016784
  • 2L. Almeida, P. Bagnerini, A. Habbal.

    Modeling actin cable contraction, in: Comput. Math. Appl., 2012, vol. 64, no 3, pp. 310–321.

    http://dx.doi.org/10.1016/j.camwa.2012.02.041
  • 3L. Almeida, P. Bagnerini, A. Habbal, S. Noselli, F. Serman.

    A Mathematical Model for Dorsal Closure, in: Journal of Theoretical Biology, January 2011, vol. 268, no 1, pp. 105-119. [ DOI : 10.1016/j.jtbi.2010.09.029 ]

    http://hal.inria.fr/inria-00544350/en
  • 4B. Andreianov, P. Goatin, N. Seguin.

    Finite volume schemes for locally constrained conservation laws, in: Numer. Math., 2010, vol. 115, no 4, pp. 609–645, With supplementary material available online.
  • 5L. Blanchard, R. Duvigneau, A.-V. Vuong, B. Simeon.

    Shape gradient for isogeometric structural design, in: J. Optimization Theory and Applications, 2014, vol. 161, no 2.
  • 6S. Blandin, P. Goatin.

    Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, in: Numerische Mathematik, 2015. [ DOI : 10.1007/s00211-015-0717-6 ]

    https://hal.inria.fr/hal-00954527
  • 7R. M. Colombo, P. Goatin.

    A well posed conservation law with a variable unilateral constraint, in: J. Differential Equations, 2007, vol. 234, no 2, pp. 654–675.
  • 8M. L. Delle Monache, P. Goatin.

    Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, in: J. Differential Equations, 2014, vol. 257, no 11, pp. 4015–4029.
  • 9M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin, A. Bayen.

    A PDE-ODE model for a junction with ramp buffer, in: SIAM J. Appl. Math., 2014, vol. 74, no 1, pp. 22–39.
  • 10R. Duvigneau, P. Chandrashekar.

    Kriging-based optimization applied to flow control, in: Int. J. for Numerical Methods in Fluids, 2012, vol. 69, no 11, pp. 1701-1714.
  • 11J.-A. Désidéri.

    5: Partage de territoire en ingénierie concourante, in: Optimisation Multidisciplinaire en Mécanique 1: démarche de conception, stratégies collaboratives et concourantes, multiniveau de modèles et de paramètres, sous la direction de Rajan Filomeno Coelho, Piotr Breitkopf, Hermes Science Publications-Lavoisier, 2009, ISBN 978-2-7462-2195-6.
  • 12J.-A. Désidéri.

    7: Two-discipline Optimization, in: Multidisciplinary Design Optimization in Computational Mechanics, Piotr Breitkopf and Rajan Filomeno Coelho eds., ISTE London and John Wiley, April 2010, pp. 287-320, ISBN: 9781848211384.
  • 13J.-A. Désidéri.

    Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, in: Comptes Rendus de l'Académie des Sciences Paris, 2012, vol. 350, pp. 313-318.

    http://dx.doi.org/10.1016/j.crma.2012.03.014
  • 14J.-A. Désidéri.

    Multiple-Gradient Descent Algorithm (MGDA) for Pareto-Front Identification, in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon, W.; Kuznetsov, Y.A.; Neittaanmäki, P.; Pironneau, O. Eds., Springer-Verlag, 2014, vol. 34, J. Périaux and R. Glowinski Jubilees.
  • 15J.-A. Désidéri, R. Duvigneau, B. Abou El Majd, J. Zhao.

    7: Optimisation de forme paramétrique multiniveau, in: Optimisation Multidisciplinaire en Mécanique 1: démarche de conception, stratégies collaboratives et concourantes, multiniveau de modèles et de paramètres, sous la direction de Rajan Filomeno Coelho, Piotr Breitkopf, Hermes Science Publications-Lavoisier, 2009, ISBN 978-2-7462-2195-6.
  • 16J.-A. Désidéri, R. Duvigneau, A. Habbal.

    Multi-Objective Design Optimization Using Nash Games, in: Computational Intelligence in Aerospace Sciences, V. M. Becerra and M. Vassile Eds., Progress in Astronautics and Aeronautics, T. C. Lieuwen Ed.-in-Chief, American Institute for Aeronautics and Astronautics Inc., Reston, Virginia, 2014, vol. 244.
  • 17J.-A. Désidéri.

    Revision of the Multiple-Gradient Descent Algorithm (MGDA) by Hierarchical Orthogonalization, Inria Sophia Antipolis ; Inria, April 2015, no RR-8710.

    https://hal.inria.fr/hal-01139994
  • 18M. Garavello, P. Goatin.

    The Cauchy problem at a node with buffer, in: Discrete Contin. Dyn. Syst., 2012, vol. 32, no 6, pp. 1915–1938.
  • 19P. Goatin, M. Mimault.

    A mixed system modeling two-directional pedestrian flows, in: Mathematical Biosciences and Engineering, 2015, vol. 12, no 2, pp. 375-392.

    https://hal.inria.fr/hal-00968396
  • 20E. Guilmineau, R. Duvigneau, J. Labroquère.

    Optimization of jet parameters to control the flow on a ramp, in: Compte rendu de l'Académie des Sciences, June 2014, vol. 342, no 6–7.
  • 21A. Habbal, H. Barelli, G. Malandain.

    Assessing the ability of the 2D Fisher-KPP equation to model cell-sheet wound closure, in: Math. Biosci., 2014, vol. 252, pp. 45–59.

    http://dx.doi.org/10.1016/j.mbs.2014.03.009
  • 22A. Habbal, M. Kallel.

    Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems, in: SIAM J. Control Optim., 2013, vol. 51, no 5, pp. 4066–4083.

    http://dx.doi.org/10.1137/120869808
  • 23M. Kallel, R. Aboulaich, A. Habbal, M. Moakher.

    A Nash-game approach to joint image restoration and segmentation, in: Appl. Math. Model., 2014, vol. 38, no 11-12, pp. 3038–3053.

    http://dx.doi.org/10.1016/j.apm.2013.11.034
  • 24E. R. León, A. L. Pape, J.-A. Désidéri, D. Alfano, M. Costes.

    Concurrent Aerodynamic Optimization of Rotor Blades Using a Nash Game Method, in: Journal of the American Helicopter Society, American Helicopter Society International Inc. Ed., 2014.
  • 25M. Martinelli, R. Duvigneau.

    On the use of second-order derivative and metamodel-based Monte-Carlo for uncertainty estimation in aerodynamics, in: Computers and Fluids, 2010, vol. 37, no 6.
  • 26F. Poirion.

    Stochastic Multi Gradient Descent Algorithm, ONERA, July 2014.
  • 27M. Twarogowska, P. Goatin, R. Duvigneau.

    Macroscopic modeling and simulations of room evacuation, in: Appl. Math. Model., 2014, vol. 38, no 24, pp. 5781–5795.
  • 28G. Xu, B. Mourrain, A. Galligo, R. Duvigneau.

    Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, in: J. Comput. Physics, November 2013, vol. 252.
  • 29A. Zerbinati, A. Minelli, I. Ghazlane, J.-A. Désidéri.

    Meta-Model-Assisted MGDA for Multi-Objective Functional Optimization, in: Computers and Fluids, 2014, vol. 102, pp. 116-130.
Publications of the year

Articles in International Peer-Reviewed Journals

  • 30A. Aggarwal, R. M. Colombo, P. Goatin.

    Nonlocal systems of conservation laws in several space dimensions, in: SIAM Journal on Numerical Analysis, 2015, vol. 52, no 2, pp. 963-983.

    https://hal.inria.fr/hal-01016784
  • 31M. Ayadi, A. Gdhami, A. Habbal, M. Mokni, B. Yahyaoui.

    Improving the mechanical performances of a multilayered plate with the orientations of its layers of fibers, in: Computers and Mathematics with Applications, October 2015, vol. 70, no 8, 14 p. [ DOI : 10.1016/j.camwa.2015.08.009 ]

    https://hal.inria.fr/hal-01247521
  • 32A. Benki, A. Habbal, G. Mathis, O. Beigneux.

    Multicriteria shape design of an aerosol can, in: journal of computational design and engineering, 2015, 11 p. [ DOI : 10.1016/j.jcde.2015.03.003 ]

    https://hal.inria.fr/hal-01144269
  • 33S. Blandin, P. Goatin.

    Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, in: Numerische Mathematik, 2015. [ DOI : 10.1007/s00211-015-0717-6 ]

    https://hal.inria.fr/hal-00954527
  • 34R. Duvigneau, J. Labroquère, E. Guilmineau.

    Comparison of turbulence closures for optimized active control, in: Computers and Fluids, January 2016, no 124. [ DOI : 10.1016/j.compfluid.2015.10.011 ]

    https://hal.inria.fr/hal-01251823
  • 35P. Goatin, S. Göttlich, O. Kolb.

    Speed limit and ramp meter control for traffic flow networks, in: Engineering Optimization, 2015. [ DOI : 10.1080/0305215X.2015.1097099 ]

    https://hal.archives-ouvertes.fr/hal-01234592
  • 36P. Goatin, M. Mimault.

    A mixed system modeling two-directional pedestrian flows, in: Mathematical Biosciences and Engineering, 2015, vol. 12, no 2, pp. 375-392.

    https://hal.inria.fr/hal-00968396
  • 37P. Goatin, S. Scialanga.

    Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, in: Networks and Hetereogeneous Media, January 2016.

    https://hal.archives-ouvertes.fr/hal-01234584
  • 38L. L. Obsu, M. L. Delle Monache, P. Goatin, S. M. Kassa.

    Traffic flow optimization on roundabouts, in: Mathematical Methods in the Applied Sciences, 2015, vol. 38, no 14, pp. 3075–3096. [ DOI : 10.1002/mma.3283 ]

    https://hal.inria.fr/hal-00939985
  • 39F.-Z. Oujebbour, A. Habbal, R. Ellaia.

    Optimization of stamping process parameters to predict and reduce springback and failure criterion, in: Structural and Multidisciplinary Optimization, February 2015, vol. 51, no 2. [ DOI : 10.1007/s00158-014-1138-3 ]

    https://hal.inria.fr/hal-01247533
  • 40D. Szubert, I. Asproulias, F. Grossi, R. Duvigneau, Y. Hoarau, M. Braza.

    Numerical study of the turbulent transonic interaction and transition location effect involving optimisation around a supercritical airfoil, in: European Journal of Mechanics - B/Fluids, January 2016, vol. 55, no 2.

    https://hal.inria.fr/hal-01251813

International Conferences with Proceedings

  • 41R. Duvigneau, J. Labroquère, E. Guilmineau.

    Numerical and Modeling Issues for Optimization of Flow Control Devices, in: 50th 3AF Conference on Applied Aerodynamics, Toulouse, France, March 2015.

    https://hal.inria.fr/hal-01119650

Internal Reports

  • 42R. Duvigneau.

    A Sensitivity Equation Method for Unsteady Compressible Flows: Implementation and Verification, Inria, June 2015, no RR-8739, 34 p.

    https://hal.inria.fr/hal-01161957
  • 43J.-A. Désidéri.

    Revision of the Multiple-Gradient Descent Algorithm (MGDA) by Hierarchical Orthogonalization, Inria Sophia Antipolis ; Inria, April 2015, no RR-8710.

    https://hal.inria.fr/hal-01139994

Other Publications

References in notes
  • 46R. Abgrall, P. M. Congedo.

    A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems, in: J. Comput. Physics, 2012.
  • 47Y. Achdou, I. Capuzzo-Dolcetta.

    Mean field games: numerical methods, in: SIAM J. Numer. Anal., 2010, vol. 48, no 3, pp. 1136–1162.

    http://dx.doi.org/10.1137/090758477
  • 48L. Almeida, P. Bagnerini, A. Habbal.

    Modeling actin cable contraction, in: Comput. Math. Appl., 2012, vol. 64, no 3, pp. 310–321.

    http://dx.doi.org/10.1016/j.camwa.2012.02.041
  • 49L. Almeida, P. Bagnerini, A. Habbal, S. Noselli, F. Serman.

    A Mathematical Model for Dorsal Closure, in: Journal of Theoretical Biology, January 2011, vol. 268, no 1, pp. 105-119. [ DOI : 10.1016/j.jtbi.2010.09.029 ]

    http://hal.inria.fr/inria-00544350/en
  • 50D. Amadori, W. Shen.

    An integro-differential conservation law arising in a model of granular flow, in: J. Hyperbolic Differ. Equ., 2012, vol. 9, no 1, pp. 105–131.
  • 51P. Amorim.

    On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, in: Bull. Braz. Math. Soc. (N.S.), 2012, vol. 43, no 4, pp. 599–614.
  • 52P. Amorim, R. Colombo, A. Teixeira.

    On the Numerical Integration of Scalar Nonlocal Conservation Laws, in: ESAIM M2AN, 2015, vol. 49, no 1, pp. 19–37.
  • 53Q. Bao, R. C. Hughes.

    Galectin-3 and polarized growth within collagen gels of wild-type and ricin-resistant MDCK renal epithelial cells, in: Glycobiology, 1999, vol. 9, no 5, pp. 489-495.
  • 54S. Benzoni-Gavage, R. M. Colombo, P. Gwiazda.

    Measure valued solutions to conservation laws motivated by traffic modelling, in: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2006, vol. 462, no 2070, pp. 1791–1803.
  • 55E. Bertino, R. Duvigneau, P. Goatin.

    Uncertainties in traffic flow and model validation on GPS data, In preparation.
  • 56F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory.

    On nonlocal conservation laws modelling sedimentation, in: Nonlinearity, 2011, vol. 24, no 3, pp. 855–885.
  • 57A. Bressan, S. Čanić, M. Garavello, M. Herty, B. Piccoli.

    Flows on networks: recent results and perspectives, in: EMS Surv. Math. Sci., 2014, vol. 1, no 1, pp. 47–111.
  • 58M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram.

    Mean field games with nonlinear mobilities in pedestrian dynamics, in: Discrete Contin. Dyn. Syst. Ser. B, 2014, vol. 19, no 5, pp. 1311–1333.
  • 59M. Burger, J. Haskovec, M.-T. Wolfram.

    Individual based and mean-field modelling of direct aggregation, in: Physica D, 2013, vol. 260, pp. 145–158.
  • 60A. Cabassi, P. Goatin.

    Validation of traffic flow models on processed GPS data, Inria, 2013, no 8382, https://hal.inria.fr/hal-00876311 .
  • 61F. Camilli, E. Carlini, C. Marchi.

    A model problem for Mean Field Games on networks, in: Discrete and Continuous Dynamical Systems, 2015, vol. 35, no 9, pp. 4173-4192.
  • 62J. A. Carrillo, S. Martin, M.-T. Wolfram.

    A local version of the Hughes model for pedestrian flow, 2015, Preprint.
  • 63C. Chalons, M. L. Delle Monache, P. Goatin.

    A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, 2015, Preprint.
  • 64C. Claudel, A. Bayen.

    Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods, in: Automatic Control, IEEE Transactions on, May 2010, vol. 55, no 5, pp. 1158-1174.
  • 65C. G. Claudel, A. M. Bayen.

    Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, in: SIAM J. Control Optim., 2011, vol. 49, no 2, pp. 383–402.
  • 66R. M. Colombo, M. Garavello, M. Lécureux-Mercier.

    A class of nonlocal models for pedestrian traffic, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, no 04, 1150023 p.
  • 67R. M. Colombo, M. Herty, M. Mercier.

    Control of the continuity equation with a non local flow, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 2, pp. 353–379.
  • 68R. M. Colombo, M. Lécureux-Mercier.

    Nonlocal crowd dynamics models for several populations, in: Acta Math. Sci. Ser. B Engl. Ed., 2012, vol. 32, no 1, pp. 177–196.
  • 69R. M. Colombo, F. Marcellini.

    A mixed ODE–PDE model for vehicular traffic, in: Mathematical Methods in the Applied Sciences, 2015, vol. 38, no 7, pp. 1292–1302.
  • 70G. Costeseque, J.-P. Lebacque.

    Discussion about traffic junction modelling: conservation laws vs Hamilton-Jacobi equations, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 411–433.
  • 71J. Cottrell, T. Hughes, Y. Bazilevs.

    Isogeometric analysis : towards integration of CAD and FEA, John Wiley & sons, 2009.
  • 72G. Crippa, M. Lécureux-Mercier.

    Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, in: Nonlinear Differential Equations and Applications NoDEA, 2012, pp. 1-15.
  • 73E. Cristiani, B. Piccoli, A. Tosin.

    How can macroscopic models reveal self-organization in traffic flow?, in: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, Dec 2012, pp. 6989-6994.
  • 74E. Cristiani, B. Piccoli, A. Tosin.

    Multiscale modeling of pedestrian dynamics, MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014, vol. 12, xvi+260 p.
  • 75C. M. Dafermos.

    Solutions in L for a conservation law with memory, in: Analyse mathématique et applications, Montrouge, Gauthier-Villars, 1988, pp. 117–128.
  • 76P. Degond, J.-G. Liu, C. Ringhofer.

    Large-scale dynamics of mean-field games driven by local Nash equilibria, in: J. Nonlinear Sci., 2014, vol. 24, no 1, pp. 93–115.

    http://dx.doi.org/10.1007/s00332-013-9185-2
  • 77M. L. Delle Monache, P. Goatin.

    A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 435–447.
  • 78M. L. Delle Monache, P. Goatin.

    Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, in: J. Differential Equations, 2014, vol. 257, no 11, pp. 4015–4029.
  • 79B. Després, G. Poëtte, D. Lucor.

    Robust uncertainty propagation in systems of conservation laws with the entropy closure method, in: Uncertainty quantification in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, 2013, vol. 92, pp. 105–149.
  • 80R. J. DiPerna.

    Measure-valued solutions to conservation laws, in: Arch. Rational Mech. Anal., 1985, vol. 88, no 3, pp. 223–270.
  • 81C. Dogbé.

    Modeling crowd dynamics by the mean-field limit approach, in: Math. Comput. Modelling, 2010, vol. 52, no 9-10, pp. 1506–1520.
  • 82R. Duvigneau, D. Pelletier.

    A sensitivity equation method for fast evaluation of nearby flows and uncertainty analysis for shape parameters, in: Int. J. of Computational Fluid Dynamics, August 2006, vol. 20, no 7, pp. 497–512.
  • 83J.-A. Désidéri.

    Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, in: Comptes Rendus de l'Académie des Sciences Paris, 2012, vol. 350, pp. 313-318.

    http://dx.doi.org/10.1016/j.crma.2012.03.014
  • 84J.-A. Désidéri.

    Multiple-Gradient Descent Algorithm (MGDA) for Pareto-Front Identification, in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon, W.; Kuznetsov, Y.A.; Neittaanmäki, P.; Pironneau, O. Eds., Springer-Verlag, 2014, vol. 34, J. Périaux and R. Glowinski Jubilees.
  • 85J.-A. Désidéri, R. Duvigneau, B. Abou El Majd, J. Zhao.

    7: Optimisation de forme paramétrique multiniveau, in: Optimisation Multidisciplinaire en Mécanique 1: démarche de conception, stratégies collaboratives et concourantes, multiniveau de modèles et de paramètres, sous la direction de Rajan Filomeno Coelho, Piotr Breitkopf, Hermes Science Publications-Lavoisier, 2009, ISBN 978-2-7462-2195-6.
  • 86J.-A. Désidéri.

    Revision of the Multiple-Gradient Descent Algorithm (MGDA) by Hierarchical Orthogonalization, Inria Sophia Antipolis ; Inria, April 2015, no RR-8710.

    https://hal.inria.fr/hal-01139994
  • 87R. Erban, M. B. Flegg, G. A. Papoian.

    Multiscale stochastic reaction-diffusion modeling: application to actin dynamics in filopodia, in: Bull. Math. Biol., 2014, vol. 76, no 4, pp. 799–818.

    http://dx.doi.org/10.1007/s11538-013-9844-3
  • 88R. Eymard, T. Gallouët, R. Herbin.

    Finite volume methods, in: Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020.
  • 89R. Farooqui, G. Fenteany.

    Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement, in: Journal of Cell Science, 2005, vol. 118, no Pt 1, pp. 51-63.
  • 90G. Fenteany, P. A. Janmey, T. P. Stossel.

    Signaling pathways and cell mechanics involved in wound closure by epithelia cell sheets, in: Current Biology, 2000, vol. 10, no 14, pp. 831-838.
  • 91U. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor.

    Construction of approximate entropy measure valued solutions for systems of conservation laws, Seminar for Applied Mathematics, ETH Zürich, 2014, no 2014-33.
  • 92M. B. Flegg, S. Hellander, R. Erban.

    Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations, in: J. Comput. Phys., 2015, vol. 289, pp. 1–17.

    http://dx.doi.org/10.1016/j.jcp.2015.01.030
  • 93A. Forrester.

    Efficient Global Aerodynamic Optimisation Using Expensive Computational Fluid Dynamics Simulations, University of Southampton, 2004.
  • 94B. Franz, M. B. Flegg, S. J. Chapman, R. Erban.

    Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics, in: SIAM J. Appl. Math., 2013, vol. 73, no 3, pp. 1224–1247.

    http://dx.doi.org/10.1137/120882469
  • 95D. Gabay.

    Minimizing a differentiable function over a differential manifold, in: J. Optim. Theory Appl., 1982, vol. 37, no 2.
  • 96M. Garavello, B. Piccoli.

    Traffic flow on networks, AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, vol. 1, Conservation laws models.
  • 97M. Garavello, B. Piccoli.

    Coupling of microscopic and phase transition models at boundary, in: Netw. Heterog. Media, 2013, vol. 8, no 3, pp. 649–661.
  • 98E. Garnier, P. Pamart, J. Dandois, P. Sagaut.

    Evaluation of the unsteady RANS capabilities for separated flow control, in: Computers & Fluids, 2012, vol. 61, pp. 39-45.
  • 99M. Gröschel, A. Keimer, G. Leugering, Z. Wang.

    Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, in: SIAM J. Control Optim., 2014, vol. 52, no 4, pp. 2141–2163.
  • 100S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl.

    Modeling, simulation and validation of material flow on conveyor belts, in: Applied Mathematical Modelling, 2014, vol. 38, no 13, pp. 3295 - 3313.
  • 101A. Habbal, H. Barelli, G. Malandain.

    Assessing the ability of the 2D Fisher-KPP equation to model cell-sheet wound closure, in: Math. Biosci., 2014, vol. 252, pp. 45–59.

    http://dx.doi.org/10.1016/j.mbs.2014.03.009
  • 102X. Han, P. Sagaut, D. Lucor.

    On sensitivity of RANS simulations to uncertain turbulent inflow conditions, in: Computers & Fluids, 2012, vol. 61, no 2-5.
  • 103D. Helbing.

    Traffic and related self-driven many-particle systems, in: Rev. Mod. Phys., 2001, vol. 73, pp. 1067–1141.
  • 104D. Helbing, P. Molnar, I. J. Farkas, K. Bolay.

    Self-organizing pedestrian movement, in: Environment and planning B, 2001, vol. 28, no 3, pp. 361–384.
  • 105J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, A. M. Bayen.

    Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, in: Transportation Research Part C: Emerging Technologies, 2010, vol. 18, no 4, pp. 568–583.
  • 106L. Huyse, R. Lewis.

    Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions, ICASE, January 2001, no 2001–1.
  • 107C. Imbert, R. Monneau.

    Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, in: arXiv preprint arXiv:1306.2428, October 2014.
  • 108O. Knio, O. L. Maitre.

    Uncertainty propagation in CFD using polynomial chaos decomposition, in: Fluid Dynamics Research, September 2006, vol. 38, no 9, pp. 616–640.
  • 109A. Kurganov, A. Polizzi.

    Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrehenius Look-Ahead Dynamics, in: Netw. Heterog. Media, 2009, vol. 4, no 3, pp. 431-451.
  • 110J. Labroquère, R. Duvigneau, E. Guilmineau.

    Impact of Turbulence Closures and Numerical Errors for the Optimization of Flow Control Devices, in: 21th AIAA Computational Fluid Dynamics Conference, San Diego, USA, 2013.
  • 111A. Lachapelle, M.-T. Wolfram.

    On a mean field game approach modeling congestion and aversion in pedestrian crowds, in: Transportation Research Part B: Methodological, 2011, vol. 45, no 10, pp. 1572 - 1589.
  • 112J.-M. Lasry, P.-L. Lions.

    Mean field games, in: Jpn. J. Math., 2007, vol. 2, no 1, pp. 229–260.
  • 113W. Li, L. Huyse, S. Padula.

    Robust airfoil optimization to achieve consistent drag reduction over a Mach range, ICASE, August 2001, no 2001–22.
  • 114G. Lin, C.-H. Su, G. Karniadakis.

    Predicting shock dynamics in the presence of uncertainties, in: Journal of Computational Physics, 2006, no 217, pp. 260-276.
  • 115B. A. E. Majd, J.-A. Desideri, R. Duvigneau.

    Multilevel strategies for parametric shape optimization in aerodynamics, in: European Journal of Numerical Mechanics, 2008, vol. 17, no 1-2, pp. 149-168.
  • 116C. Merritt, F. Forsberg, J. Liu, F. Kallel.

    In-vivo elastography in animal models: Feasibility studies, (abstract), in: J. Ultrasound Med., 2002, vol. 21, no 98.
  • 117S. Mishra, C. Schwab, J. Sukys.

    Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws, in: Lecture Notes in Computational Science and Engineering, 2013, vol. 92, pp. 225–294. [ DOI : 10.1007/978-3-319-00885-1 ]
  • 118B. Mohammadi.

    Value at risk for confidence level quantifications in robust engineering optimization, in: Optimal Control Applications and Methods, April 2014.
  • 119M. Nemec, D. Zingg.

    Multipoint and multiobjective aerodynamic shape optimization, in: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, USA, September 2002.
  • 120W. Oberkampf, F. Blottner.

    Issues in Computational Fluid Dynamics code verification and validation, in: AIAA Journal, 1998, vol. 36, pp. 687–695.
  • 121B. Perthame.

    Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007, x+198 p.
  • 122B. Piccoli, F. Rossi.

    Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, in: Acta Appl. Math., 2013, vol. 124, pp. 73–105.
  • 123V. Picheny, D. Ginsbourger, Y. Richet.

    Noisy expected improvement and on-line computation time allocation for the optimization of simulators with tunable fidelity, in: 2nd Int. Conf. on Engineering Optimization, Lisbon, Portugal, 2010.
  • 124F. Poirion.

    Stochastic Multi Gradient Descent Algorithm, ONERA, July 2014.
  • 125M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, P. Silberzan.

    Collective migration of an epithelial monolayer in response to a model wound, in: Proceedings of the National Academy of Sciences, 2007, vol. 104, no 41, pp. 15988-15993. [ DOI : 10.1073/pnas.0705062104 ]
  • 126F. S. Priuli.

    First order mean field games in crowd dynamics, in: ArXiv e-prints, February 2014.
  • 127M. Putko, P. Newman, A. Taylor, L. Green.

    Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives, in: 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, June 2001, AIAA Paper 2001-2528.
  • 128C. Qi, K. A. Gallivan, P.-A. Absil.

    Riemannian BFGS Algorithm with Applications, Springer, 2010, chap. Recent Advances in Optimization and its Applications in Engineering.
  • 129C. Qi, K. Gallivan, P.-A. Absil.

    Riemannian BFGS Algorithm with Applications, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, W. Michiels (editors), Springer Berlin Heidelberg, 2010, pp. 183-192.

    http://dx.doi.org/10.1007/978-3-642-12598-0
  • 130A. Saez, E. Anon, M. Ghibaudo, O. du Roure, J.-M. D. Meglio, P. Hersen, P. Silberzan, A. Buguin, B. Ladoux.

    Traction forces exerted by epithelial cell sheets, in: Journal of Physics: Condensed Matter, 2010, vol. 22, no 19, 194119 p.

    http://stacks.iop.org/0953-8984/22/i=19/a=194119
  • 131P. Sagaut.

    Large Eddy Simulation for Incompressible Flows An Introduction, Springer Berlin Heidelberg, 2006.
  • 132J. Schaefer, T. West, S. Hosder, C. Rumsey, J.-R. Carlson, W. Kleb.

    Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows, in: 22nd AIAA Computational Fluid Dynamics Conference, 22-26 June 2015, Dallas, USA., 2015.
  • 133V. Schleper.

    A hybrid model for traffic flow and crowd dynamics with random individual properties, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 393-413.
  • 134A. Sopasakis, M. A. Katsoulakis.

    Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, in: SIAM J. Appl. Math., 2006, vol. 66, no 3, pp. 921–944 (electronic).
  • 135S. Tokareva, S. Mishra, C. Schwab.

    High Order Stochastic Finite Volume Method for the Uncertainty Quantification in Hyperbolic Conservtion Laws with Random Initial Data and Flux Coefficients, in: ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, 2012, Proc. ECCOMAS.
  • 136É. Turgeon, D. Pelletier, J. Borggaard.

    Sensitivity and Uncertainty Analysis for Variable Property Flows, in: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2001, AIAA Paper 2001-0139.
  • 137C. Villani.

    Topics in optimal transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003, vol. 58, xvi+370 p.
  • 138C. Villani.

    Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new.
  • 139R. Walter, L. Huyse.

    Uncertainty analysis for fluid mechanics with applications, ICASE, February 2002, no 2002–1.
  • 140D. Xiu, G. Karniadakis.

    Modeling uncertainty in flow simulations via generalized Polynomial Chaos, in: Journal of Computational Physics, 2003, no 187, pp. 137-167.
  • 141G. Xu, B. Mourrain, R. Duvigneau, A. Galligo.

    Parametrization of computational domain in isogeometric analysis: methods and comparison, in: Computer Methods in Applied Mechanics and Engineering, 2011, vol. 200, no 23-24.
  • 142D. You, P. Moin.

    Active control of flow separation over an airfoil using synthetic jets, in: J. of Fluids and Structures, 2008, vol. 24, pp. 1349-1357.
  • 143A. Zerbinati, A. Minelli, I. Ghazlane, J.-A. Désidéri.

    Meta-Model-Assisted MGDA for Multi-Objective Functional Optimization, in: Computers and Fluids, 2014, vol. 102, pp. 116-130.
  • 144D. Zingg, S. Elias.

    Aerodynamic optimization under a range of operating conditions, in: AIAA Journal, November 2006, vol. 44, no 11, pp. 2787–2791.