Bibliography
Major publications by the team in recent years
-
1A. Amarioarei, C. Preda.
Approximation for the Distribution of Three-dimensional Discrete Scan Statistic, in: Methodology and Computing in Applied Probability, September 2013, 14 p. [ DOI : 10.1007/s11009-013-9382-3 ]
https://hal.inria.fr/hal-01092992 -
2S. Arlot, A. Celisse.
Segmentation of the mean of heteroscedastic data via cross-validation, in: Statistics and Computing, 2010, vol. 21, pp. 613–632. -
3C. Biernacki, G. Celeux, G. Govaert.
Exact and Monte Carlo Calculations of Integrated Likelihoods for the Latent Class Model, in: Journal of Statistical Planning and Inference, 2010, vol. 140, pp. 2991-3002.
https://hal.archives-ouvertes.fr/hal-00554344 -
4C. Biernacki, J. Jacques.
A generative model for rank data based on an insertion sorting algorithm, in: Computational Statistics and Data Analysis, 2013, vol. 58, pp. 162-176. [ DOI : 10.1016/j.csda.2012.08.008 ]
https://hal.archives-ouvertes.fr/hal-00441209 -
5A. Celisse, J.-J. Daudin, L. Pierre.
Consistency of maximum likelihood and variational estimators in stochastic block model, in: Electronic Journal of Statistics, 2012, pp. 1847–1899.
http://projecteuclid.org/handle/euclid.ejs -
6M. Giacofci, S. Lambert-Lacroix, G. Marot, F. Picard.
Wavelet-based clustering for mixed-effects functional models in high dimension, in: Biometrics, March 2013, vol. 69, no 1, pp. 31-40. [ DOI : 10.1111/j.1541-0420.2012.01828.x ]
http://hal.inria.fr/hal-00782458 -
7J. Jacques, C. Biernacki.
Extension of model-based classification for binary data when training and test populations differ, in: Journal of Applied Statistics, 2010, vol. 37, no 5, pp. 749-766.
https://hal.archives-ouvertes.fr/hal-00316080 -
8J. Jacques, C. Preda.
Funclust: a curves clustering method using functional random variables density approximation, in: Neurocomputing, 2013, vol. 112, pp. 164-171.
https://hal.archives-ouvertes.fr/hal-00628247 -
9A. Lourme, C. Biernacki.
Simultaneous Gaussian Model-Based Clustering for Samples of Multiple Origins, in: Computational Statistics, December 2013, vol. 152, no 3, pp. 371-391.
https://hal.inria.fr/hal-00921041 -
10V. Vandewalle, C. Biernacki, G. Celeux, G. Govaert.
A predictive deviance criterion for selecting a generative model in semi-supervised classification, in: Computational Statistics and Data Analysis, 2013, vol. 64, pp. 220-236.
https://hal.inria.fr/inria-00516991
Doctoral Dissertations and Habilitation Theses
-
11C. Théry.
Model-based covariable decorrelation in linear regression (CorReg). Application to missing data and to steel industry, Université Lille 1, July 2015.
https://hal.archives-ouvertes.fr/tel-01249789
Articles in International Peer-Reviewed Journals
-
12C. Biernacki, J. Jacques.
Model-Based Clustering of Multivariate Ordinal Data Relying on a Stochastic Binary Search Algorithm, in: Statistics and Computing, June 2015.
https://hal.inria.fr/hal-01052447 -
13C. Bouveyron, E. Côme, J. Jacques.
The discriminative functional mixture model for a comparative analysis of bike sharing systems, in: The Annals of Applied Statistics, 2015, forthcoming.
https://hal.archives-ouvertes.fr/hal-01024186 -
14S. Dabo-Niang, A. Laksaci, Z. Kaid.
On spatial conditional quantile estimation for a functional regressor, in: AStA Advances in Statistical Analysis, February 2015.
https://hal.inria.fr/hal-01206774 -
15S. Dabo-Niang, G.-M. Nkiet, S. Bouka.
Non-parametric level set estimation for spatial data, in: Advances and Applications in Statistics, September 2015, vol. 46, no 2, pp. 119 - 158. [ DOI : 10.17654/ADASAug2015_119_158 ]
https://hal.inria.fr/hal-01206787 -
16S. Dabo-Niang, C. Ternynck, F. Chebana, M. Ali Ben Alaya, T. Ouarda.
Streamflow hydrograph classification using functional data analysis, in: Journal of Hydrometeorology, October 2015. [ DOI : 10.1175/JHM-D-14-0200.1 ]
https://hal.inria.fr/hal-01206807 -
17S. Dabo-Niang, A.-F. Yao, C. Ternynck.
A new spatial regression estimator in the multivariate context, in: Comptes rendus de l'académie des sciences, Mathématiques, April 2015. [ DOI : 10.1016/j.crma.2015.04.004 ]
https://hal.inria.fr/hal-01206781 -
18S. Iovleff.
Probabilistic Auto-Associative Models and Semi-Linear PCA, in: Advances in Data Analysis and Classification, September 2015, vol. 9, no 3, 20 p. [ DOI : 10.1007/s11634-014-0185-3 ]
https://hal.archives-ouvertes.fr/hal-00734070 -
19R. Lebret, S. Iovleff, F. Langrognet, C. Biernacki, G. Celeux, G. Govaert.
Rmixmod: The R Package of the Model-Based Unsupervised, Supervised and Semi-Supervised Classification Mixmod Library, in: Journal of Statistical Software, 2015, forthcoming.
https://hal.archives-ouvertes.fr/hal-00919486 -
20M. Marbac, C. Biernacki, V. Vandewalle.
Model-based clustering for conditionally correlated categorical data, in: Journal of Classification, 2015, vol. 2, no 32, pp. 145-175. [ DOI : 10.1007/s00357 ]
https://hal.inria.fr/hal-00787757 -
21S. Poulain, C. Roumier, A. Venet-Caillault, M. Figeac, C. Herbaux, G. Marot, E. DOYE, E. Bertrand, S. GEFFROY, F. LEPRETRE, O. Nibourel, A. DECAMBRON, E. Boyle, A. Renneville, S. Tricot, A. Daudignon, B. Quesnel, P. Duthilleul, C. Preudhomme, X. Leleu.
Genomic landscape of CXCR4 mutations in Waldenstrom's Macroglobulinemia, in: Clinical Cancer Research, October 2015, vol. 21, no 22. [ DOI : 10.1158/1078-0432.CCR-15-0646 ]
https://hal.inria.fr/hal-01230058
Articles in National Peer-Reviewed Journals
-
22K. Benabdeslem, C. Biernacki, M. Lebbah.
Les trois défis du Big-Data: Eléments de reflexion, in: Statistique et Société, 2015, vol. 3, no 1, pp. 19-22.
https://hal.archives-ouvertes.fr/hal-01198435
Invited Conferences
-
23C. Biernacki.
Clustering: evolution of methods to meet new challenges, in: Journée thématique Clustering, Issy Les Moulineaux, France, Orange Labs, October 2015.
https://hal.archives-ouvertes.fr/hal-01253394 -
24C. Biernacki.
MixtComp software: Model-based clustering/imputation with mixed data, missing data and uncertain data, in: MISSDATA 2015, Rennes, France, June 2015.
https://hal.archives-ouvertes.fr/hal-01253393 -
25C. Biernacki, T. Deregnaucourt, V. Kubicki.
Model-based clustering with mixed/missing data using the new software MixtComp, in: CMStatistics 2015 (ERCIM 2015), London, United Kingdom, December 2015.
https://hal.archives-ouvertes.fr/hal-01249829 -
26S. Dabo-Niang.
Spatial risk estimation and application to biomedical data, in: Tunisian Association of Statistics and Applications Conference, Hammamet, Tunisia, March 2015.
https://hal.inria.fr/hal-01206865 -
27S. Dabo-Niang.
Spatial Risk estimation and Applications, in: African Women in Mathematics Association Conference, Navaisha, Kenya, July 2015.
https://hal.inria.fr/hal-01206866 -
28J. Jacques.
Clustering multivariate ranking data, in: 60th World Statistics Congress – ISI2015, Rio de Janeiro, Brazil, July 2015.
https://hal.inria.fr/hal-01241256 -
29J. Jacques.
The discriminative functional mixture model for a comparative analysis of bike sharing systems, in: CMStatistics 2015, 8th International Conference of the ERCIM working group on Computational and Methodological Statistics, London, United Kingdom, December 2015.
https://hal.inria.fr/hal-01241254 -
30F. Loingeville, J. Jacques, C. Preda, P. Guarini, O. Molinier.
Modèle Linéaire Généralisé Hiérarchique Gamma-Poisson à 3 facteurs aléatoires - Application au contrôle de qualité, in: 47èmes Journées de Statistique, Lille, France, Société Française de Statistique, June 2015.
https://hal.archives-ouvertes.fr/hal-01152840 -
31M. Marbac, C. Biernacki, V. Vandewalle.
Model-based clustering of categorical data by relaxing conditional independence, in: Classification Society Meeting, Hamilton, Ontario, Canada, Mc Master University, June 2015.
https://hal.inria.fr/hal-01238334 -
32C. Preda.
Regression with categorical functional data, in: 8th International Conference of the ERCIM WG on Computational and Methodological Statistics, Londres, United Kingdom, December 2015.
https://hal.inria.fr/hal-01251289 -
33V. Vandewalle, C. Biernacki.
An efficient SEM algorithm for Gaussian Mixtures with missing data, in: 8th International Conference of the ERCIM WG on Computational and Methodological Statistics, Londres, United Kingdom, December 2015.
https://hal.inria.fr/hal-01242588 -
34V. Vandewalle, C. Cozma, C. Preda.
Clustering categorical functional data Application to medical discharge letters, in: 8th International Conference of the ERCIM WG on Computational and Methodological Statistics, Londres, France, December 2015.
https://hal.inria.fr/hal-01251284
International Conferences with Proceedings
-
35C. Bouveyron, J. Jacques.
Un algorithme EM pour une version parcimonieuse de l’analyse en composantes principales probabiliste, in: EGC 2015 - 15ème conférence internationale sur l'extraction et la gestion des connaissances, Luxembourg, Luxembourg, January 2015.
https://hal.inria.fr/hal-01241262 -
36M. A. Hasnat, J. VELCIN, S. Bonnevay, J. Jacques.
Simultaneous Clustering and Model Selection for Multinomial Distribution: A Comparative Study, in: Intelligent Data Analysis, Saint Etienne, France, October 2015.
https://hal.inria.fr/hal-01203561
Conferences without Proceedings
-
37M. Brunin, C. Biernacki, A. Celisse.
Compromis précision-temps de calcul et détection de ruptures, in: 6ème Rencontres des Jeunes Statisticiens, Le Teich, France, August 2015.
https://hal.inria.fr/hal-01238276 -
38Q. Grimonprez, A. Celisse, G. Marot.
Sélection de groupes de variables corrélées par classification ascendante hiérarchique et group-lasso, in: Sixièmes rencontres des jeunes statisticiens, Le Teich, France, SFdS, August 2015.
https://hal.inria.fr/hal-01238253 -
39Q. Grimonprez, A. Celisse, G. Marot.
Sélection de groupes de variables corrélées par classification ascendante hiérarchique et group-lasso, in: 47èmes Journées de Statistique, Lille, France, June 2015.
https://hal.inria.fr/hal-01238248 -
40S. Iovleff.
Rtkpp: Un package pour faire l'interface entre R et la bibliothèque STK++, in: Quatrièmes Rencontres R, Grenoble, France, June 2015.
https://hal.inria.fr/hal-01253792
Scientific Books (or Scientific Book chapters)
-
41C. Biernacki.
Mixture models, in: Choix de modèles et agrégation, J.-J. Droesbeke, G. Saporta, C. Thomas-Agnan (editors), Technip, December 2015.
https://hal.inria.fr/hal-01252671 -
42C. Biernacki, C. Maugis.
High-dimensional clustering, in: Choix de modèles et agrégation, Sous la direction de J-J. DROESBEKE, G. SAPORTA, C. THOMAS-AGNAN Edition: Technip, December 2015.
https://hal.archives-ouvertes.fr/hal-01252673
Other Publications
-
43P. Alquier, B. Guedj.
Bayesian Non-Negative Matrix Factorization, January 2016, working paper or preprint.
https://hal.inria.fr/hal-01251878 -
44A. Celisse, T. Mary-Huard.
New upper bounds on cross-validation for the k-Nearest Neighbor classification rule, August 2015, working paper or preprint.
https://hal.inria.fr/hal-01185092 -
45S. Dabo-Niang, A. Amiri, M. Yahaya.
Non-parametric recursive density estimation for space-time data-stream, September 2015, working paper or preprint.
https://hal.inria.fr/hal-01206833 -
46S. Dabo-Niang, A. Amiri, M. Yahaya.
Non-parametric recursive density estimation for spatial data, September 2015, working paper or preprint.
https://hal.inria.fr/hal-01206814 -
47S. Dabo-Niang, A. Bassene, A. Diop.
Conditional tail index estimation for random fields: fixed design case, September 2015, working paper or preprint.
https://hal.inria.fr/hal-01206824 -
48S. Dabo-Niang, A. Bassene, A. Diop.
Kernel estimation of conditional tail index and quantile estimation for random fields, September 2015, working paper or preprint.
https://hal.inria.fr/hal-01206829 -
49S. Dabo-Niang, A. Diop, A. Bassene.
A note on conditional tail index estimation for random fields, September 2015, working paper or preprint.
https://hal.inria.fr/hal-01206809 -
50S. Dabo-Niang, B. Thiam.
Nonparametric estimation of a regression function for spatial data with errors, September 2015, working paper or preprint.
https://hal.inria.fr/hal-01206832 -
51C. Friguet, F. Letué, V. Vandewalle.
Table ronde : “pourquoi et comment enseigner l’analyse de données massives (big data)”, June 2015, 47èmes Journées de Statistique de la SFdS.
https://hal.inria.fr/hal-01250812 -
52B. Guedj, S. Robbiano.
PAC-Bayesian High Dimensional Bipartite Ranking, November 2015, working paper or preprint.
https://hal.inria.fr/hal-01226472 -
53J. Hamon, G. Even, R. Dassonneville, J. Jacques, C. Dhaenens.
Use of a novel evolutionary algorithm for genomic selection, January 2015, working paper or preprint.
https://hal.inria.fr/hal-01100660 -
54M. A. Hasnat, J. VELCIN, S. Bonnevay, J. Jacques.
Opinion mining from Twitter data using evolutionary multinomial mixture models, September 2015, working paper or preprint.
https://hal.inria.fr/hal-01204613 -
55J. Kellner, A. Celisse.
A One-Sample Test for Normality with Kernel Methods, July 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01175237 -
56L. Yengo, J. Jacques, C. Biernacki, M. Canouil.
Variable Clustering in High-Dimensional Linear Regression: The R Package clere, October 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-00940929