Bibliography
Publications of the year
Articles in International Peer-Reviewed Journals
-
1X. Antoine, R. Duboscq.
GPELab, a Matlab Toolbox to solve Gross-Pitaevskii Equations II: dynamics and stochastic simulations, in: Computer Physics Communications, 2015, vol. 193, pp. 95-117.
https://hal.archives-ouvertes.fr/hal-01095568 -
2X. Antoine, E. Lorin.
Lagrange-Schwarz waveform relaxation domain decomposition methods for linear and nonlinear quantum wave problems, in: Applied Mathematics Letters, 2016, forthcoming.
https://hal.archives-ouvertes.fr/hal-01244354 -
3X. Antoine, E. Lorin, A. D. Bandrauk.
Domain Decomposition Method and High-Order Absorbing Boundary Conditions for the Numerical Simulation of the Time Dependent Schrödinger Equation with Ionization and Recombination by Intense Electric Field, in: Journal of Scientific Computing, 2015, pp. 620-646. [ DOI : 10.1007/s10915-014-9902-5 ]
https://hal.archives-ouvertes.fr/hal-01094831 -
4C. Bianchini, A. Henrot, T. Takahashi.
Elastic energy of a convex body, in: Mathematische Nachrichten, October 2015. [ DOI : 10.1002/mana201400256 ]
https://hal.archives-ouvertes.fr/hal-01011979 -
5R. Bunoiu, K. Ramdani.
Homogenization of materials with sign changing coefficients, in: Communications in Mathematical Sciences, 2016.
https://hal.inria.fr/hal-01162225 -
6J. Dalphin, A. Henrot, S. Masnou, T. Takahashi.
On the minimization of total mean curvature, in: The Journal of Geometric Analysis, October 2015, pp. 1-22. [ DOI : 10.1007/s12220-015-9646-y ]
https://hal.archives-ouvertes.fr/hal-01015600 -
7D. Dos Santos Ferreira, P. Caro, A. Ruiz.
Stability estimates for the Calderón problem with partial data, in: Journal of Differential Equations, February 2016, vol. 260, no 3. [ DOI : 10.1016/j.jde.2015.10.007 ]
https://hal.archives-ouvertes.fr/hal-01251717 -
8M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine.
A Quasi-Optimal Domain Decomposition Algorithm for the Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 294, no 1, pp. 38-57.
https://hal.archives-ouvertes.fr/hal-01095566 -
9A. Munnier, K. Ramdani.
Asymptotic analysis of a Neumann problem in a domain with cusp. Application to the collision problem of rigid bodies in a perfect fluid., in: SIAM Journal on Mathematical Analysis, 2015, vol. 47, no 6, pp. 4360-4403.
https://hal.inria.fr/hal-00994433 -
10A. Munnier, K. Ramdani.
On the detection of small moving disks in a fluid, in: SIAM Journal on Applied Mathematics, 2016.
https://hal.inria.fr/hal-01098067 -
11K. Ramdani, M. Tucsnak, J. Valein.
Detectability and state estimation for linear age-structured population diffusion models, in: Modelisation Mathématique et Analyse Numérique, 2016, forthcoming.
https://hal.inria.fr/hal-01140166 -
12J. San Martin, E. L. Schwindt, T. Takahashi.
Reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid, in: Journal of Inverse and Ill-posed Problems, 2015.
https://hal.archives-ouvertes.fr/hal-01241112 -
13J. San Martin, T. Takahashi, M. Tucsnak.
An optimal control approach to ciliary locomotion, in: Mathematical Control and Related Fields, 2015.
https://hal.archives-ouvertes.fr/hal-01062663
International Conferences with Proceedings
-
14N. Boussaid, M. Caponigro, T. Chambrion.
An approximate controllability result with continuous spectrum : the Morse potential with dipolar interaction, in: SIAM Conference on Control and its applications, Paris, France, July 2015.
https://hal.archives-ouvertes.fr/hal-01143308 -
15M. Tucsnak, J. Valein, C.-T. Wu.
Numerical approximation of some time optimal control problems, in: European Control Conference, Linz, Austria, Proceedings of the 14th annual European Control Conference, July 2015, ThA3.4 p. [ DOI : 10.1109/ECC.2015.7330724 ]
https://hal.archives-ouvertes.fr/hal-01246356
Scientific Books (or Scientific Book chapters)
-
16X. Antoine, R. Duboscq.
Modeling and computation of Bose-Einstein condensates: stationary states, nucleation, dynamics, stochasticity, in: Lecture Notes in Mathematics, Nonlinear Optical and Atomic Systems: at the Interface of Mathematics and Physics, Lecture Notes in Mathematics,, Springer, 2015, vol. 2146, pp. 49-145.
https://hal.archives-ouvertes.fr/hal-01094826
Scientific Popularization
-
17J.-F. Scheid.
Programmation linéaire. Méthodes et applications, Techniques de l'ingénieur, Editions T.I., October 2015, vol. Mathématiques pour l'ingénieur - Méthodes numériques.
https://hal.archives-ouvertes.fr/hal-01238611
Other Publications
-
18X. Antoine, E. Lorin.
An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations, 2015, soumis.
https://hal.archives-ouvertes.fr/hal-01244513 -
19X. Antoine, Q. Tang, Y. Zhang.
On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions, 2015, soumis.
https://hal.archives-ouvertes.fr/hal-01244364 -
20N. Burq, D. Dos Santos Ferreira, K. Krupchyk.
From semiclassical Strichartz estimates to uniform resolvent estimates on compact manifolds, January 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01251701 -
21T. Hishida, A. L. Silvestre, T. Takahashi.
A boundary control problem for the steady self-propelled motion of a rigid body in a Navier-Stokes fluid, September 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01205210 -
22C. Lacave, T. Takahashi.
Small moving rigid body into a viscous incompressible fluid, June 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01169436 -
23E. Lorin, X. Yang, X. Antoine.
Frozen Gaussian approximation based domain decomposition methods for the linear and nonlinear Schrodinger equation beyond the semi-classical regime, 2015, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01244430 -
24A. Munnier, K. Ramdani.
Conformal mapping for cavity inverse problem: an explicit reconstruction formula, November 2015, working paper or preprint.
https://hal.inria.fr/hal-01196111 -
25B. Thierry, A. Vion, S. Tournier, M. El Bouajaji, D. Colignon, X. Antoine, C. Geuzaine.
GetDDM: an open framework for testing Schwarz methods for time-harmonic wave problems, 2015, soumis.
https://hal.archives-ouvertes.fr/hal-01244511
-
26C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak.
Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1632-1659. -
27X. Antoine, K. Ramdani, B. Thierry.
Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, in: Journal of Algorithms & Computational Technologies, 2012, vol. 6, no 2, pp. 241–259. -
28X. Antoine, C. Geuzaine, K. Ramdani.
Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structures Calculations, in: Wave Propagation in Periodic Media, Progress in Computational Physics, Vol. 1, Bentham, 2010, pp. 73-107. -
29D. Auroux, J. Blum.
A nudging-based data assimilation method : the Back and Forth Nudging (BFN) algorithm, in: Nonlin. Proc. Geophys., 2008, vol. 15, no 305-319. -
30M. I. Belishev, S. A. Ivanov.
Reconstruction of the parameters of a system of connected beams from dynamic boundary measurements, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, vol. 324, no Mat. Vopr. Teor. Rasprostr. Voln. 34, pp. 20–42, 262. -
31M. Bellassoued, D. Dos Santos Ferreira.
Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, in: Inverse Probl. Imaging, 2011, vol. 5, no 4, pp. 745–773.
http://dx.doi.org/10.3934/ipi.2011.5.745 -
32M. Bellassoued, D. D. S. Ferreira.
Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, in: Inverse Problems, 2010, vol. 26, no 12, 125010, 30 p.
http://dx.doi.org/10.1088/0266-5611/26/12/125010 -
33A. Bensoussan.
Filtrage optimal des systèmes linéaires, Méthodes mathématiques de l'informatique, Dunod, Paris, 1971. -
34Y. Boubendir, X. Antoine, C. Geuzaine.
A Quasi-Optimal Non-Overlapping Domain Decomposition Algorithm for the Helmholtz Equation, in: Journal of Computational Physics, 2012, vol. 2, no 231, pp. 262-280. -
35M. Boulakia.
Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 11, pp. 1515–1554.
http://dx.doi.org/10.1016/j.matpur.2005.08.004 -
36M. Boulakia, S. Guerrero.
Regular solutions of a problem coupling a compressible fluid and an elastic structure, in: J. Math. Pures Appl. (9), 2010, vol. 94, no 4, pp. 341–365.
http://dx.doi.org/10.1016/j.matpur.2010.04.002 -
37M. Boulakia, A. Osses.
Local null controllability of a two-dimensional fluid-structure interaction problem, in: ESAIM Control Optim. Calc. Var., 2008, vol. 14, no 1, pp. 1–42.
http://dx.doi.org/10.1051/cocv:2007031 -
38M. Boulakia, E. Schwindt, T. Takahashi.
Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, in: Interfaces Free Bound., 2012, vol. 14, no 3, pp. 273–306.
http://dx.doi.org/10.4171/IFB/282 -
39G. Bruckner, M. Yamamoto.
Determination of point wave sources by pointwise observations: stability and reconstruction, in: Inverse Problems, 2000, vol. 16, no 3, pp. 723–748. -
40A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont.
Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, in: J. Math. Fluid Mech., 2005, vol. 7, no 3, pp. 368–404.
http://dx.doi.org/10.1007/s00021-004-0121-y -
41C. Choi, G. Nakamura, K. Shirota.
Variational approach for identifying a coefficient of the wave equation, in: Cubo, 2007, vol. 9, no 2, pp. 81–101. -
42C. Conca, J. San Martín, M. Tucsnak.
Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, in: Comm. Partial Differential Equations, 2000, vol. 25, no 5-6, pp. 1019–1042.
http://dx.doi.org/10.1080/03605300008821540 -
43D. Coutand, S. Shkoller.
Motion of an elastic solid inside an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2005, vol. 176, no 1, pp. 25–102.
http://dx.doi.org/10.1007/s00205-004-0340-7 -
44D. Coutand, S. Shkoller.
The interaction between quasilinear elastodynamics and the Navier-Stokes equations, in: Arch. Ration. Mech. Anal., 2006, vol. 179, no 3, pp. 303–352.
http://dx.doi.org/10.1007/s00205-005-0385-2 -
45P. Cumsille, T. Takahashi.
Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, in: Czechoslovak Math. J., 2008, vol. 58(133), no 4, pp. 961–992.
http://dx.doi.org/10.1007/s10587-008-0063-2 -
46R. F. Curtain, H. Zwart.
An introduction to infinite-dimensional linear systems theory, Texts in Applied Mathematics, Springer-Verlag, New York, 1995, vol. 21. -
47B. Desjardins, M. J. Esteban.
On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, in: Comm. Partial Differential Equations, 2000, vol. 25, no 7-8, pp. 1399–1413.
http://dx.doi.org/10.1080/03605300008821553 -
48B. Desjardins, M. J. Esteban.
Existence of weak solutions for the motion of rigid bodies in a viscous fluid, in: Arch. Ration. Mech. Anal., 1999, vol. 146, no 1, pp. 59–71.
http://dx.doi.org/10.1007/s002050050136 -
49B. Desjardins, M. J. Esteban, C. Grandmont, P. Le Tallec.
Weak solutions for a fluid-elastic structure interaction model, in: Rev. Mat. Complut., 2001, vol. 14, no 2, pp. 523–538. -
50A. El Badia, T. Ha-Duong.
Determination of point wave sources by boundary measurements, in: Inverse Problems, 2001, vol. 17, no 4, pp. 1127–1139. -
51M. El Bouajaji, X. Antoine, C. Geuzaine.
Approximate Local Magnetic-to-Electric Surface Operators for Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 15, no 279, pp. 241-260. -
52E. Feireisl.
On the motion of rigid bodies in a viscous compressible fluid, in: Arch. Ration. Mech. Anal., 2003, vol. 167, no 4, pp. 281–308.
http://dx.doi.org/10.1007/s00205-002-0242-5 -
53E. Feireisl.
On the motion of rigid bodies in a viscous incompressible fluid, in: J. Evol. Equ., 2003, vol. 3, no 3, pp. 419–441, Dedicated to Philippe Bénilan.
http://dx.doi.org/10.1007/s00028-003-0110-1 -
54E. Feireisl, M. Hillairet, Š. Nečasová.
On the motion of several rigid bodies in an incompressible non-Newtonian fluid, in: Nonlinearity, 2008, vol. 21, no 6, pp. 1349–1366.
http://dx.doi.org/10.1088/0951-7715/21/6/012 -
55E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov, J.-P. Puel.
Local exact controllability of the Navier-Stokes system, in: J. Math. Pures Appl. (9), 2004, vol. 83, no 12, pp. 1501–1542. -
56E. Fridman.
Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method, in: Automatica, 2013, vol. 49, no 7, pp. 2250 - 2260. -
57G. P. Galdi.
Slow motion of a body in a viscous incompressible fluid with application to particle sedimentation, in: Recent developments in partial differential equations, Quad. Mat., Dept. Math., Seconda Univ. Napoli, Caserta, 1998, vol. 2, pp. 1–35. -
58G. P. Galdi, A. L. Silvestre.
Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in: Nonlinear problems in mathematical physics and related topics, I, Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York, 2002, vol. 1, pp. 121–144. [ DOI : 10.1007/978-1-4615-0777-2-8 ]
http://dx.doi.org/10.1007/978-1-4615-0777-2_8 -
59G. P. Galdi, A. L. Silvestre.
The steady motion of a Navier-Stokes liquid around a rigid body, in: Arch. Ration. Mech. Anal., 2007, vol. 184, no 3, pp. 371–400.
http://dx.doi.org/10.1007/s00205-006-0026-4 -
60G. P. Galdi, A. L. Silvestre.
On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, in: Indiana Univ. Math. J., 2009, vol. 58, no 6, pp. 2805–2842.
http://dx.doi.org/10.1512/iumj.2009.58.3758 -
61O. Glass, F. Sueur.
The movement of a solid in an incompressible perfect fluid as a geodesic flow, in: Proc. Amer. Math. Soc., 2012, vol. 140, no 6, pp. 2155–2168.
http://dx.doi.org/10.1090/S0002-9939-2011-11219-X -
62C. Grandmont, Y. Maday.
Existence for an unsteady fluid-structure interaction problem, in: M2AN Math. Model. Numer. Anal., 2000, vol. 34, no 3, pp. 609–636.
http://dx.doi.org/10.1051/m2an:2000159 -
63M. D. Gunzburger, H.-C. Lee, G. A. Seregin.
Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, in: J. Math. Fluid Mech., 2000, vol. 2, no 3, pp. 219–266.
http://dx.doi.org/10.1007/PL00000954 -
64G. Haine.
Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator, in: Mathematics of Control, Signals, and Systems, 2014, vol. 26, no 3, pp. 435-462. -
65G. Haine, K. Ramdani.
Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, in: Numer. Math., 2012, vol. 120, no 2, pp. 307-343. -
66J. Houot, A. Munnier.
On the motion and collisions of rigid bodies in an ideal fluid, in: Asymptot. Anal., 2008, vol. 56, no 3-4, pp. 125–158. -
67O. Y. Imanuvilov, T. Takahashi.
Exact controllability of a fluid-rigid body system, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 4, pp. 408–437.
http://dx.doi.org/10.1016/j.matpur.2007.01.005 -
68V. Isakov.
Inverse problems for partial differential equations, Applied Mathematical Sciences, Second, Springer, New York, 2006, vol. 127. -
69N. V. Judakov.
The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, in: Dinamika Splošn. Sredy, 1974, no Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 249–253, 255. -
70B. Kaltenbacher, A. Neubauer, O. Scherzer.
Iterative regularization methods for nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, vol. 6. -
71G. Legendre, T. Takahashi.
Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation, in: M2AN Math. Model. Numer. Anal., 2008, vol. 42, no 4, pp. 609–644.
http://dx.doi.org/10.1051/m2an:2008020 -
72J. Lequeurre.
Existence of strong solutions to a fluid-structure system, in: SIAM J. Math. Anal., 2011, vol. 43, no 1, pp. 389–410.
http://dx.doi.org/10.1137/10078983X -
73J. Lohéac, A. Munnier.
Controllability of 3D low Reynolds number swimmers, in: ESAIM Control Optim. Calc. Var., 2014, vol. 20, no 1, pp. 236–268.
http://dx.doi.org/10.1051/cocv/2013063 -
74J. Lohéac, J.-F. Scheid.
Time optimal control for a nonholonomic system with state constraint, in: Math. Control Relat. Fields, 2013, vol. 3, no 2, pp. 185–208.
http://dx.doi.org/10.3934/mcrf.2013.3.185 -
75J. Lohéac, J.-F. Scheid, M. Tucsnak.
Controllability and time optimal control for low Reynolds numbers swimmers, in: Acta Appl. Math., 2013, vol. 123, pp. 175–200.
http://dx.doi.org/10.1007/s10440-012-9760-9 -
76D. Luenberger.
Observing the state of a linear system, in: IEEE Trans. Mil. Electron., 1964, vol. MIL-8, pp. 74-80. -
77P. Moireau, D. Chapelle, P. Le Tallec.
Joint state and parameter estimation for distributed mechanical systems, in: Computer Methods in Applied Mechanics and Engineering, 2008, vol. 197, pp. 659–677. -
78A. Munnier, B. Pinçon.
Locomotion of articulated bodies in an ideal fluid: 2D model with buoyancy, circulation and collisions, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1899–1940.
http://dx.doi.org/10.1142/S0218202510004829 -
79A. Munnier, E. Zuazua.
Large time behavior for a simplified -dimensional model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2005, vol. 30, no 1-3, pp. 377–417.
http://dx.doi.org/10.1081/PDE-200050080 -
80J. O'Reilly.
Observers for linear systems, Mathematics in Science and Engineering, Academic Press Inc., Orlando, FL, 1983, vol. 170. -
81J. Ortega, L. Rosier, T. Takahashi.
On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 1, pp. 139–165.
http://dx.doi.org/10.1016/j.anihpc.2005.12.004 -
82K. Ramdani, M. Tucsnak, G. Weiss.
Recovering the initial state of an infinite-dimensional system using observers, in: Automatica, 2010, vol. 46, no 10, pp. 1616-1625. -
83J.-P. Raymond.
Feedback stabilization of a fluid-structure model, in: SIAM J. Control Optim., 2010, vol. 48, no 8, pp. 5398–5443.
http://dx.doi.org/10.1137/080744761 -
84J. San Martín, J.-F. Scheid, L. Smaranda.
A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density, in: Numer. Math., 2012, vol. 122, no 2, pp. 341–382.
http://dx.doi.org/10.1007/s00211-012-0460-1 -
85J. San Martín, J.-F. Scheid, L. Smaranda.
The Lagrange-Galerkin method for fluid-structure interaction problems, in: Boundary Value Problems., 2013, pp. 213–246. -
86J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, in: SIAM J. Numer. Anal., 2005, vol. 43, no 4, pp. 1536–1571 (electronic).
http://dx.doi.org/10.1137/S0036142903438161 -
87J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
An initial and boundary value problem modeling of fish-like swimming, in: Arch. Ration. Mech. Anal., 2008, vol. 188, no 3, pp. 429–455.
http://dx.doi.org/10.1007/s00205-007-0092-2 -
88J. San Martín, L. Smaranda, T. Takahashi.
Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, in: J. Comput. Appl. Math., 2009, vol. 230, no 2, pp. 521–545.
http://dx.doi.org/10.1016/j.cam.2008.12.021 -
89J. San Martín, V. Starovoitov, M. Tucsnak.
Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2002, vol. 161, no 2, pp. 113–147.
http://dx.doi.org/10.1007/s002050100172 -
90D. Serre.
Chute libre d'un solide dans un fluide visqueux incompressible. Existence, in: Japan J. Appl. Math., 1987, vol. 4, no 1, pp. 99–110.
http://dx.doi.org/10.1007/BF03167757 -
91A. L. Silvestre.
On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, in: J. Math. Fluid Mech., 2002, vol. 4, no 4, pp. 285–326.
http://dx.doi.org/10.1007/PL00012524 -
92A. L. Silvestre.
Steady solutions with finite kinetic energy for a perturbed Navier-Stokes system in , in: J. Differential Equations, 2009, vol. 247, no 7, pp. 2124–2139.
http://dx.doi.org/10.1016/j.jde.2009.07.003 -
93P. Stefanov, G. Uhlmann.
Thermoacoustic tomography with variable sound speed, in: Inverse Problems, 2009, vol. 25, no 7, 16 p, 075011. -
94T. Takahashi.
Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, in: Adv. Differential Equations, 2003, vol. 8, no 12, pp. 1499–1532. -
95T. Takahashi, M. Tucsnak.
Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, in: J. Math. Fluid Mech., 2004, vol. 6, no 1, pp. 53–77.
http://dx.doi.org/10.1007/s00021-003-0083-4 -
96H. Trinh, T. Fernando.
Functional observers for dynamical systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2012, vol. 420. -
97J. L. Vázquez, E. Zuazua.
Large time behavior for a simplified 1D model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2003, vol. 28, no 9-10, pp. 1705–1738.
http://dx.doi.org/10.1081/PDE-120024530 -
98H. F. Weinberger.
On the steady fall of a body in a Navier-Stokes fluid, in: Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Providence, R. I., Amer. Math. Soc., 1973, pp. 421–439.