EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1X. Antoine, R. Duboscq.

    GPELab, a Matlab Toolbox to solve Gross-Pitaevskii Equations II: dynamics and stochastic simulations, in: Computer Physics Communications, 2015, vol. 193, pp. 95-117.

    https://hal.archives-ouvertes.fr/hal-01095568
  • 2X. Antoine, E. Lorin.

    Lagrange-Schwarz waveform relaxation domain decomposition methods for linear and nonlinear quantum wave problems, in: Applied Mathematics Letters, 2016, forthcoming.

    https://hal.archives-ouvertes.fr/hal-01244354
  • 3X. Antoine, E. Lorin, A. D. Bandrauk.

    Domain Decomposition Method and High-Order Absorbing Boundary Conditions for the Numerical Simulation of the Time Dependent Schrödinger Equation with Ionization and Recombination by Intense Electric Field, in: Journal of Scientific Computing, 2015, pp. 620-646. [ DOI : 10.1007/s10915-014-9902-5 ]

    https://hal.archives-ouvertes.fr/hal-01094831
  • 4C. Bianchini, A. Henrot, T. Takahashi.

    Elastic energy of a convex body, in: Mathematische Nachrichten, October 2015. [ DOI : 10.1002/mana201400256 ]

    https://hal.archives-ouvertes.fr/hal-01011979
  • 5R. Bunoiu, K. Ramdani.

    Homogenization of materials with sign changing coefficients, in: Communications in Mathematical Sciences, 2016.

    https://hal.inria.fr/hal-01162225
  • 6J. Dalphin, A. Henrot, S. Masnou, T. Takahashi.

    On the minimization of total mean curvature, in: The Journal of Geometric Analysis, October 2015, pp. 1-22. [ DOI : 10.1007/s12220-015-9646-y ]

    https://hal.archives-ouvertes.fr/hal-01015600
  • 7D. Dos Santos Ferreira, P. Caro, A. Ruiz.

    Stability estimates for the Calderón problem with partial data, in: Journal of Differential Equations, February 2016, vol. 260, no 3. [ DOI : 10.1016/j.jde.2015.10.007 ]

    https://hal.archives-ouvertes.fr/hal-01251717
  • 8M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine.

    A Quasi-Optimal Domain Decomposition Algorithm for the Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 294, no 1, pp. 38-57.

    https://hal.archives-ouvertes.fr/hal-01095566
  • 9A. Munnier, K. Ramdani.

    Asymptotic analysis of a Neumann problem in a domain with cusp. Application to the collision problem of rigid bodies in a perfect fluid., in: SIAM Journal on Mathematical Analysis, 2015, vol. 47, no 6, pp. 4360-4403.

    https://hal.inria.fr/hal-00994433
  • 10A. Munnier, K. Ramdani.

    On the detection of small moving disks in a fluid, in: SIAM Journal on Applied Mathematics, 2016.

    https://hal.inria.fr/hal-01098067
  • 11K. Ramdani, M. Tucsnak, J. Valein.

    Detectability and state estimation for linear age-structured population diffusion models, in: Modelisation Mathématique et Analyse Numérique, 2016, forthcoming.

    https://hal.inria.fr/hal-01140166
  • 12J. San Martin, E. L. Schwindt, T. Takahashi.

    Reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid, in: Journal of Inverse and Ill-posed Problems, 2015.

    https://hal.archives-ouvertes.fr/hal-01241112
  • 13J. San Martin, T. Takahashi, M. Tucsnak.

    An optimal control approach to ciliary locomotion, in: Mathematical Control and Related Fields, 2015.

    https://hal.archives-ouvertes.fr/hal-01062663

International Conferences with Proceedings

  • 14N. Boussaid, M. Caponigro, T. Chambrion.

    An approximate controllability result with continuous spectrum : the Morse potential with dipolar interaction, in: SIAM Conference on Control and its applications, Paris, France, July 2015.

    https://hal.archives-ouvertes.fr/hal-01143308
  • 15M. Tucsnak, J. Valein, C.-T. Wu.

    Numerical approximation of some time optimal control problems, in: European Control Conference, Linz, Austria, Proceedings of the 14th annual European Control Conference, July 2015, ThA3.4 p. [ DOI : 10.1109/ECC.2015.7330724 ]

    https://hal.archives-ouvertes.fr/hal-01246356

Scientific Books (or Scientific Book chapters)

  • 16X. Antoine, R. Duboscq.

    Modeling and computation of Bose-Einstein condensates: stationary states, nucleation, dynamics, stochasticity, in: Lecture Notes in Mathematics, Nonlinear Optical and Atomic Systems: at the Interface of Mathematics and Physics, Lecture Notes in Mathematics,, Springer, 2015, vol. 2146, pp. 49-145.

    https://hal.archives-ouvertes.fr/hal-01094826

Scientific Popularization

  • 17J.-F. Scheid.

    Programmation linéaire. Méthodes et applications, Techniques de l'ingénieur, Editions T.I., October 2015, vol. Mathématiques pour l'ingénieur - Méthodes numériques.

    https://hal.archives-ouvertes.fr/hal-01238611

Other Publications

  • 18X. Antoine, E. Lorin.

    An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations, 2015, soumis.

    https://hal.archives-ouvertes.fr/hal-01244513
  • 19X. Antoine, Q. Tang, Y. Zhang.

    On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions, 2015, soumis.

    https://hal.archives-ouvertes.fr/hal-01244364
  • 20N. Burq, D. Dos Santos Ferreira, K. Krupchyk.

    From semiclassical Strichartz estimates to uniform Lp resolvent estimates on compact manifolds, January 2016, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01251701
  • 21T. Hishida, A. L. Silvestre, T. Takahashi.

    A boundary control problem for the steady self-propelled motion of a rigid body in a Navier-Stokes fluid, September 2015, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01205210
  • 22C. Lacave, T. Takahashi.

    Small moving rigid body into a viscous incompressible fluid, June 2015, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01169436
  • 23E. Lorin, X. Yang, X. Antoine.

    Frozen Gaussian approximation based domain decomposition methods for the linear and nonlinear Schrodinger equation beyond the semi-classical regime, 2015, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01244430
  • 24A. Munnier, K. Ramdani.

    Conformal mapping for cavity inverse problem: an explicit reconstruction formula, November 2015, working paper or preprint.

    https://hal.inria.fr/hal-01196111
  • 25B. Thierry, A. Vion, S. Tournier, M. El Bouajaji, D. Colignon, X. Antoine, C. Geuzaine.

    GetDDM: an open framework for testing Schwarz methods for time-harmonic wave problems, 2015, soumis.

    https://hal.archives-ouvertes.fr/hal-01244511
References in notes
  • 26C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak.

    Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1632-1659.
  • 27X. Antoine, K. Ramdani, B. Thierry.

    Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, in: Journal of Algorithms & Computational Technologies, 2012, vol. 6, no 2, pp. 241–259.
  • 28X. Antoine, C. Geuzaine, K. Ramdani.

    Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structures Calculations, in: Wave Propagation in Periodic Media, Progress in Computational Physics, Vol. 1, Bentham, 2010, pp. 73-107.
  • 29D. Auroux, J. Blum.

    A nudging-based data assimilation method : the Back and Forth Nudging (BFN) algorithm, in: Nonlin. Proc. Geophys., 2008, vol. 15, no 305-319.
  • 30M. I. Belishev, S. A. Ivanov.

    Reconstruction of the parameters of a system of connected beams from dynamic boundary measurements, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, vol. 324, no Mat. Vopr. Teor. Rasprostr. Voln. 34, pp. 20–42, 262.
  • 31M. Bellassoued, D. Dos Santos Ferreira.

    Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, in: Inverse Probl. Imaging, 2011, vol. 5, no 4, pp. 745–773.

    http://dx.doi.org/10.3934/ipi.2011.5.745
  • 32M. Bellassoued, D. D. S. Ferreira.

    Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, in: Inverse Problems, 2010, vol. 26, no 12, 125010, 30 p.

    http://dx.doi.org/10.1088/0266-5611/26/12/125010
  • 33A. Bensoussan.

    Filtrage optimal des systèmes linéaires, Méthodes mathématiques de l'informatique, Dunod, Paris, 1971.
  • 34Y. Boubendir, X. Antoine, C. Geuzaine.

    A Quasi-Optimal Non-Overlapping Domain Decomposition Algorithm for the Helmholtz Equation, in: Journal of Computational Physics, 2012, vol. 2, no 231, pp. 262-280.
  • 35M. Boulakia.

    Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 11, pp. 1515–1554.

    http://dx.doi.org/10.1016/j.matpur.2005.08.004
  • 36M. Boulakia, S. Guerrero.

    Regular solutions of a problem coupling a compressible fluid and an elastic structure, in: J. Math. Pures Appl. (9), 2010, vol. 94, no 4, pp. 341–365.

    http://dx.doi.org/10.1016/j.matpur.2010.04.002
  • 37M. Boulakia, A. Osses.

    Local null controllability of a two-dimensional fluid-structure interaction problem, in: ESAIM Control Optim. Calc. Var., 2008, vol. 14, no 1, pp. 1–42.

    http://dx.doi.org/10.1051/cocv:2007031
  • 38M. Boulakia, E. Schwindt, T. Takahashi.

    Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, in: Interfaces Free Bound., 2012, vol. 14, no 3, pp. 273–306.

    http://dx.doi.org/10.4171/IFB/282
  • 39G. Bruckner, M. Yamamoto.

    Determination of point wave sources by pointwise observations: stability and reconstruction, in: Inverse Problems, 2000, vol. 16, no 3, pp. 723–748.
  • 40A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont.

    Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, in: J. Math. Fluid Mech., 2005, vol. 7, no 3, pp. 368–404.

    http://dx.doi.org/10.1007/s00021-004-0121-y
  • 41C. Choi, G. Nakamura, K. Shirota.

    Variational approach for identifying a coefficient of the wave equation, in: Cubo, 2007, vol. 9, no 2, pp. 81–101.
  • 42C. Conca, J. San Martín, M. Tucsnak.

    Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, in: Comm. Partial Differential Equations, 2000, vol. 25, no 5-6, pp. 1019–1042.

    http://dx.doi.org/10.1080/03605300008821540
  • 43D. Coutand, S. Shkoller.

    Motion of an elastic solid inside an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2005, vol. 176, no 1, pp. 25–102.

    http://dx.doi.org/10.1007/s00205-004-0340-7
  • 44D. Coutand, S. Shkoller.

    The interaction between quasilinear elastodynamics and the Navier-Stokes equations, in: Arch. Ration. Mech. Anal., 2006, vol. 179, no 3, pp. 303–352.

    http://dx.doi.org/10.1007/s00205-005-0385-2
  • 45P. Cumsille, T. Takahashi.

    Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, in: Czechoslovak Math. J., 2008, vol. 58(133), no 4, pp. 961–992.

    http://dx.doi.org/10.1007/s10587-008-0063-2
  • 46R. F. Curtain, H. Zwart.

    An introduction to infinite-dimensional linear systems theory, Texts in Applied Mathematics, Springer-Verlag, New York, 1995, vol. 21.
  • 47B. Desjardins, M. J. Esteban.

    On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, in: Comm. Partial Differential Equations, 2000, vol. 25, no 7-8, pp. 1399–1413.

    http://dx.doi.org/10.1080/03605300008821553
  • 48B. Desjardins, M. J. Esteban.

    Existence of weak solutions for the motion of rigid bodies in a viscous fluid, in: Arch. Ration. Mech. Anal., 1999, vol. 146, no 1, pp. 59–71.

    http://dx.doi.org/10.1007/s002050050136
  • 49B. Desjardins, M. J. Esteban, C. Grandmont, P. Le Tallec.

    Weak solutions for a fluid-elastic structure interaction model, in: Rev. Mat. Complut., 2001, vol. 14, no 2, pp. 523–538.
  • 50A. El Badia, T. Ha-Duong.

    Determination of point wave sources by boundary measurements, in: Inverse Problems, 2001, vol. 17, no 4, pp. 1127–1139.
  • 51M. El Bouajaji, X. Antoine, C. Geuzaine.

    Approximate Local Magnetic-to-Electric Surface Operators for Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 15, no 279, pp. 241-260.
  • 52E. Feireisl.

    On the motion of rigid bodies in a viscous compressible fluid, in: Arch. Ration. Mech. Anal., 2003, vol. 167, no 4, pp. 281–308.

    http://dx.doi.org/10.1007/s00205-002-0242-5
  • 53E. Feireisl.

    On the motion of rigid bodies in a viscous incompressible fluid, in: J. Evol. Equ., 2003, vol. 3, no 3, pp. 419–441, Dedicated to Philippe Bénilan.

    http://dx.doi.org/10.1007/s00028-003-0110-1
  • 54E. Feireisl, M. Hillairet, Š. Nečasová.

    On the motion of several rigid bodies in an incompressible non-Newtonian fluid, in: Nonlinearity, 2008, vol. 21, no 6, pp. 1349–1366.

    http://dx.doi.org/10.1088/0951-7715/21/6/012
  • 55E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov, J.-P. Puel.

    Local exact controllability of the Navier-Stokes system, in: J. Math. Pures Appl. (9), 2004, vol. 83, no 12, pp. 1501–1542.
  • 56E. Fridman.

    Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method, in: Automatica, 2013, vol. 49, no 7, pp. 2250 - 2260.
  • 57G. P. Galdi.

    Slow motion of a body in a viscous incompressible fluid with application to particle sedimentation, in: Recent developments in partial differential equations, Quad. Mat., Dept. Math., Seconda Univ. Napoli, Caserta, 1998, vol. 2, pp. 1–35.
  • 58G. P. Galdi, A. L. Silvestre.

    Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in: Nonlinear problems in mathematical physics and related topics, I, Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York, 2002, vol. 1, pp. 121–144. [ DOI : 10.1007/978-1-4615-0777-2-8 ]

    http://dx.doi.org/10.1007/978-1-4615-0777-2_8
  • 59G. P. Galdi, A. L. Silvestre.

    The steady motion of a Navier-Stokes liquid around a rigid body, in: Arch. Ration. Mech. Anal., 2007, vol. 184, no 3, pp. 371–400.

    http://dx.doi.org/10.1007/s00205-006-0026-4
  • 60G. P. Galdi, A. L. Silvestre.

    On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, in: Indiana Univ. Math. J., 2009, vol. 58, no 6, pp. 2805–2842.

    http://dx.doi.org/10.1512/iumj.2009.58.3758
  • 61O. Glass, F. Sueur.

    The movement of a solid in an incompressible perfect fluid as a geodesic flow, in: Proc. Amer. Math. Soc., 2012, vol. 140, no 6, pp. 2155–2168.

    http://dx.doi.org/10.1090/S0002-9939-2011-11219-X
  • 62C. Grandmont, Y. Maday.

    Existence for an unsteady fluid-structure interaction problem, in: M2AN Math. Model. Numer. Anal., 2000, vol. 34, no 3, pp. 609–636.

    http://dx.doi.org/10.1051/m2an:2000159
  • 63M. D. Gunzburger, H.-C. Lee, G. A. Seregin.

    Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, in: J. Math. Fluid Mech., 2000, vol. 2, no 3, pp. 219–266.

    http://dx.doi.org/10.1007/PL00000954
  • 64G. Haine.

    Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator, in: Mathematics of Control, Signals, and Systems, 2014, vol. 26, no 3, pp. 435-462.
  • 65G. Haine, K. Ramdani.

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, in: Numer. Math., 2012, vol. 120, no 2, pp. 307-343.
  • 66J. Houot, A. Munnier.

    On the motion and collisions of rigid bodies in an ideal fluid, in: Asymptot. Anal., 2008, vol. 56, no 3-4, pp. 125–158.
  • 67O. Y. Imanuvilov, T. Takahashi.

    Exact controllability of a fluid-rigid body system, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 4, pp. 408–437.

    http://dx.doi.org/10.1016/j.matpur.2007.01.005
  • 68V. Isakov.

    Inverse problems for partial differential equations, Applied Mathematical Sciences, Second, Springer, New York, 2006, vol. 127.
  • 69N. V. Judakov.

    The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, in: Dinamika Splošn. Sredy, 1974, no Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 249–253, 255.
  • 70B. Kaltenbacher, A. Neubauer, O. Scherzer.

    Iterative regularization methods for nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, vol. 6.
  • 71G. Legendre, T. Takahashi.

    Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation, in: M2AN Math. Model. Numer. Anal., 2008, vol. 42, no 4, pp. 609–644.

    http://dx.doi.org/10.1051/m2an:2008020
  • 72J. Lequeurre.

    Existence of strong solutions to a fluid-structure system, in: SIAM J. Math. Anal., 2011, vol. 43, no 1, pp. 389–410.

    http://dx.doi.org/10.1137/10078983X
  • 73J. Lohéac, A. Munnier.

    Controllability of 3D low Reynolds number swimmers, in: ESAIM Control Optim. Calc. Var., 2014, vol. 20, no 1, pp. 236–268.

    http://dx.doi.org/10.1051/cocv/2013063
  • 74J. Lohéac, J.-F. Scheid.

    Time optimal control for a nonholonomic system with state constraint, in: Math. Control Relat. Fields, 2013, vol. 3, no 2, pp. 185–208.

    http://dx.doi.org/10.3934/mcrf.2013.3.185
  • 75J. Lohéac, J.-F. Scheid, M. Tucsnak.

    Controllability and time optimal control for low Reynolds numbers swimmers, in: Acta Appl. Math., 2013, vol. 123, pp. 175–200.

    http://dx.doi.org/10.1007/s10440-012-9760-9
  • 76D. Luenberger.

    Observing the state of a linear system, in: IEEE Trans. Mil. Electron., 1964, vol. MIL-8, pp. 74-80.
  • 77P. Moireau, D. Chapelle, P. Le Tallec.

    Joint state and parameter estimation for distributed mechanical systems, in: Computer Methods in Applied Mechanics and Engineering, 2008, vol. 197, pp. 659–677.
  • 78A. Munnier, B. Pinçon.

    Locomotion of articulated bodies in an ideal fluid: 2D model with buoyancy, circulation and collisions, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1899–1940.

    http://dx.doi.org/10.1142/S0218202510004829
  • 79A. Munnier, E. Zuazua.

    Large time behavior for a simplified N-dimensional model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2005, vol. 30, no 1-3, pp. 377–417.

    http://dx.doi.org/10.1081/PDE-200050080
  • 80J. O'Reilly.

    Observers for linear systems, Mathematics in Science and Engineering, Academic Press Inc., Orlando, FL, 1983, vol. 170.
  • 81J. Ortega, L. Rosier, T. Takahashi.

    On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 1, pp. 139–165.

    http://dx.doi.org/10.1016/j.anihpc.2005.12.004
  • 82K. Ramdani, M. Tucsnak, G. Weiss.

    Recovering the initial state of an infinite-dimensional system using observers, in: Automatica, 2010, vol. 46, no 10, pp. 1616-1625.
  • 83J.-P. Raymond.

    Feedback stabilization of a fluid-structure model, in: SIAM J. Control Optim., 2010, vol. 48, no 8, pp. 5398–5443.

    http://dx.doi.org/10.1137/080744761
  • 84J. San Martín, J.-F. Scheid, L. Smaranda.

    A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density, in: Numer. Math., 2012, vol. 122, no 2, pp. 341–382.

    http://dx.doi.org/10.1007/s00211-012-0460-1
  • 85J. San Martín, J.-F. Scheid, L. Smaranda.

    The Lagrange-Galerkin method for fluid-structure interaction problems, in: Boundary Value Problems., 2013, pp. 213–246.
  • 86J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.

    Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, in: SIAM J. Numer. Anal., 2005, vol. 43, no 4, pp. 1536–1571 (electronic).

    http://dx.doi.org/10.1137/S0036142903438161
  • 87J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.

    An initial and boundary value problem modeling of fish-like swimming, in: Arch. Ration. Mech. Anal., 2008, vol. 188, no 3, pp. 429–455.

    http://dx.doi.org/10.1007/s00205-007-0092-2
  • 88J. San Martín, L. Smaranda, T. Takahashi.

    Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, in: J. Comput. Appl. Math., 2009, vol. 230, no 2, pp. 521–545.

    http://dx.doi.org/10.1016/j.cam.2008.12.021
  • 89J. San Martín, V. Starovoitov, M. Tucsnak.

    Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2002, vol. 161, no 2, pp. 113–147.

    http://dx.doi.org/10.1007/s002050100172
  • 90D. Serre.

    Chute libre d'un solide dans un fluide visqueux incompressible. Existence, in: Japan J. Appl. Math., 1987, vol. 4, no 1, pp. 99–110.

    http://dx.doi.org/10.1007/BF03167757
  • 91A. L. Silvestre.

    On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, in: J. Math. Fluid Mech., 2002, vol. 4, no 4, pp. 285–326.

    http://dx.doi.org/10.1007/PL00012524
  • 92A. L. Silvestre.

    Steady solutions with finite kinetic energy for a perturbed Navier-Stokes system in 3, in: J. Differential Equations, 2009, vol. 247, no 7, pp. 2124–2139.

    http://dx.doi.org/10.1016/j.jde.2009.07.003
  • 93P. Stefanov, G. Uhlmann.

    Thermoacoustic tomography with variable sound speed, in: Inverse Problems, 2009, vol. 25, no 7, 16 p, 075011.
  • 94T. Takahashi.

    Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, in: Adv. Differential Equations, 2003, vol. 8, no 12, pp. 1499–1532.
  • 95T. Takahashi, M. Tucsnak.

    Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, in: J. Math. Fluid Mech., 2004, vol. 6, no 1, pp. 53–77.

    http://dx.doi.org/10.1007/s00021-003-0083-4
  • 96H. Trinh, T. Fernando.

    Functional observers for dynamical systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2012, vol. 420.
  • 97J. L. Vázquez, E. Zuazua.

    Large time behavior for a simplified 1D model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2003, vol. 28, no 9-10, pp. 1705–1738.

    http://dx.doi.org/10.1081/PDE-120024530
  • 98H. F. Weinberger.

    On the steady fall of a body in a Navier-Stokes fluid, in: Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Providence, R. I., Amer. Math. Soc., 1973, pp. 421–439.