EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1B. Afeyan, F. Casas, N. Crouseilles, A. Dodhy, E. Faou, M. Mehrenberger, E. Sonnendrücker.

    Simulations of kinetic electrostatic electron nonlinear (KEEN) waves with variable velocity resolution grids and high-order time-splitting, in: The European Physical Journal D, 2014, vol. 68, no 10, pp. 1–21.
  • 2N. Crouseilles, P. Glanc, S. A. Hirstoaga, E. Madaule, M. Mehrenberger, J. Pétri.

    A new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids, from diocotron instability to ITG turbulence, in: The European Physical Journal D, 2014, vol. 68, no 9, pp. 1–10.
  • 3E. Frenod, S. A. Hirstoaga, M. Lutz, E. Sonnendrücker.

    Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field, in: Communications in Computational Physics, August 2015, vol. 18, no 2, pp. 263–296. [ DOI : 10.4208/cicp.070214.160115a ]

    https://hal.archives-ouvertes.fr/hal-00974028
  • 4P. Helluy, L. Navoret, N. Pham, A. Crestetto.

    Reduced Vlasov-Maxwell simulations, in: Comptes Rendus Mécanique, 2014, vol. 342, no 10-11, pp. 619–635.
  • 5C. Steiner, M. Mehrenberger, N. Crouseilles, V. Grandgirard, G. Latu, F. Rozar.

    Gyroaverage operator for a polar mesh, in: The European Physical Journal D, 2015, vol. 69, no 1, pp. 1–16.
Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 7E. Frenod, S. A. Hirstoaga, M. Lutz, E. Sonnendrücker.

    Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field, in: Communications in Computational Physics, August 2015, vol. 18, no 2, pp. 263–296. [ DOI : 10.4208/cicp.070214.160115a ]

    https://hal.archives-ouvertes.fr/hal-00974028
  • 8E. Frenod, S. A. Hirstoaga, E. Sonnendrücker.

    An exponential integrator for a highly oscillatory Vlasov equation, in: Discrete and Continuous Dynamical Systems - Series S, February 2015, vol. 8, no 1, pp. 169-183.

    https://hal.inria.fr/hal-00833479
  • 9A. Hamiaz, M. Mehrenberger, A. Back, P. Navaro.

    Guiding center simulations on curvilinear grids, in: ESAIM: Proceedings, 2015.

    https://hal.archives-ouvertes.fr/hal-00908500
  • 10C. Steiner, M. Mehrenberger, N. Crouseilles, V. Grandgirard, G. Latu, F. Rozar.

    Gyroaverage operator for a polar mesh, in: European Physical Journal D, 2015, vol. 69, no 1, 221 p. [ DOI : 10.1140/epjd/e2014-50211-7 ]

    https://hal.inria.fr/hal-01090681

Internal Reports

  • 11M. Mehrenberger, L. S. Mendoza, C. Prouveur, E. Sonnendrücker.

    Solving the guiding-center model on a regular hexagonal mesh, Institut Camille Jordan, Université Claude Bernard Lyon 1, France ; equipe projet KALIIFFE, 2015, pp. 1 - 28.

    https://hal.archives-ouvertes.fr/hal-01117196

Other Publications

References in notes
  • 22C. Altmann, T. Belat, M. Gutnic, P. Helluy, H. Mathis, E. Sonnendrücker, W. Angulo, J.-M. Hérard.

    A local time-stepping Discontinuous Galerkin algorithm for the MHD system, in: Modélisation et Simulation de Fluides Complexes - CEMRACS 2008, Marseille, France, July 2009. [ DOI : 10.1051/proc/2009038 ]

    https://hal.inria.fr/inria-00594611
  • 23C. Bardos, N. Besse.

    Hamiltonian structure, fluid representation and stability for the Vlasov-Dirac-Benney equation, in: Fields Inst. Commun, 2015, no 75, pp. 1-30.
  • 24C. Bardos, N. Besse.

    Semi-classical Limit of an Infinite Dimensional System of Nonlinear Schrödinger Equations, in: Bull. Inst. Math. Acad. Sin., 2015.
  • 25T. Barth.

    On the role of involutions in the discontinous Galerkin discretization of Maxwell and magnetohydrodynamic systems, in: IMA Vol. Math. Appl., 2006, vol. 142, pp. 69–88.
  • 26N. Besse.

    Lagrangian averaged gyrokinetic-waterbag continuum, in: Commun. Math. Sci., 2015, vol. 13, no 88.
  • 27A. Crestetto, P. Helluy.

    Resolution of the Vlasov-Maxwell system by PIC Discontinuous Galerkin method on GPU with OpenCL, in: CEMRACS'11, France, EDP Sciences, 2011, vol. 38, pp. 257–274. [ DOI : 10.1051/proc/201238014 ]

    https://hal.archives-ouvertes.fr/hal-00731021
  • 28N. Crouseilles, E. Frénod, S. A. Hirstoaga, A. Mouton.

    Two-Scale Macro-Micro decomposition of the Vlasov equation with a strong magnetic field, in: Mathematical Models and Methods in Applied Sciences, 2013, vol. 23, no 08, pp. 1527–1559. [ DOI : 10.1142/S0218202513500152. ]

    https://hal.archives-ouvertes.fr/hal-00638617
  • 29B. Eliasson.

    Outflow boundary conditions for the Fourier transformed one-dimensional Vlasov-Poisson system, in: J. Sci. Comput., 2001, vol. 1, pp. 1–28.
  • 30E. Frenod, F. Salvarani, E. Sonnendrücker.

    Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, in: Mathematical Models and Methods in Applied Sciences, 2009, vol. 19, no 2, pp. 175-197, ACM 82D10 35B27 76X05.

    http://hal.archives-ouvertes.fr/hal-00180700/en/
  • 31V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, L. Villard.

    A drift-kinetic Semi-Lagrangian 4D Vlasov code for ion turbulence simulation, in: J. of Comput. Phys., 2006, vol. 217, 395 p.
  • 32D. Hatch, D. Del-Castillo-Negrete, P. Terry.

    Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition, in: Journal of Computational Physics, 2012, vol. 231, pp. 4234–4256.
  • 33C. Hauck, C.-D. Levermore.

    Convex Duality and Entropy-Based Moment Closures: Characterizing Degenerate Densities, in: SIAM J. Control Optim., 2008, vol. 47, pp. 1977–2015.
  • 34C.-D. Levermore.

    Entropy-based moment closures for kinetic equations, in: Transport Theory Statist. Phys., 1997, vol. 26, no 4-5, pp. 591–606.
  • 35J. Malmberg, C. Wharton.

    Collisionless damping of electrostatic plasma waves, in: Phys. Rev. Lett., 1964, vol. 13, no 6, pp. 184–186.
  • 36G. Manfredi, S. A. Hirstoaga, S. Devaux.

    Vlasov modelling of parallel transport in a tokamak scrape-off layer, in: Plasma Phys. Control. Fus., 2011, vol. 53, no 1, 015012.

    https://hal.archives-ouvertes.fr/hal-00538153
  • 37C. Mouhot, C. Villani.

    On Landau damping, in: Acta Mathematica, 2011, vol. 207, pp. 29-201.
  • 38E. Sonnendrücker, J.-R. Roche, P. Bertrand, A. Ghizzo.

    The semi-Lagrangian method for the numerical resolution of the Vlasov equation, in: J. Comput. Phys., 1999, vol. 149, no 2, pp. 201–220.
  • 39E. Tadmor.

    Entropy conservative finite element schemes, in: Numerical methods for Compressible Flows, Finite Difference Element and Volume Techniques, T. E. Tezduyar, T. J. R. Hughes (editors), Proc. Winter Annual Meeting, Amer. Soc. Mech. Eng, AMD- Vol. 78, 1986, 149 p.