Research Program
New Software and Platforms
Research Program
New Software and Platforms


Publications of the year

Articles in International Peer-Reviewed Journals

  • 1A. Aggarwal, P. Goatin.

    Crowd Dynamics through Non-Local Conservation Laws, in: Boletim da Sociedade Brasileira de Matemática / Bulletin of the Brazilian Mathematical Society, 2016, vol. 47, pp. 37 - 50. [ DOI : 10.1007/s00574-016-0120-7 ]

  • 2A. Benki, A. Habbal, G. Mathis.

    Computational design of an automotive twist beam, in: journal of computational design and engineering, 2016, vol. 3, pp. 215 - 225. [ DOI : 10.1016/j.jcde.2016.01.003 ]

  • 3S. Blandin, P. Goatin.

    Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, in: Numerische Mathematik, 2016. [ DOI : 10.1007/s00211-015-0717-6 ]

  • 4M. L. Delle Monache, P. Goatin.

    A numerical scheme for moving bottlenecks in traffic flow, in: Boletim da Sociedade Brasileira de Matemática / Bulletin of the Brazilian Mathematical Society, 2016, vol. 47, no 2, pp. 605–617. [ DOI : 10.1007/s00574-016-0172-8 ]

  • 5R. Duvigneau, J. Labroquère, E. Guilmineau.

    Comparison of turbulence closures for optimized active control, in: Computers and Fluids, January 2016, no 124. [ DOI : 10.1016/j.compfluid.2015.10.011 ]

  • 6P. Goatin, S. Scialanga.

    Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, in: Networks and Hetereogeneous Media, January 2016, vol. 11, no 1, pp. 107-121.

  • 7J. A. LAVAL, G. Costeseque, B. Chilukuri.

    The impact of source terms in the variational representation of traffic flow, in: Transportation Research Part B: Methodological, December 2016. [ DOI : 10.1016/j.trb.2016.09.011 ]

  • 8E. Roca Leon, A. Le Pape, M. Costes, J.-A. Desideri, D. Alfano.

    Concurrent Aerodynamic Optimization of Rotor Blades Using a Nash Game Method, in: Journal of the American Helicopter Society, April 2016, vol. 61, no 2, 13 p. [ DOI : 10.4050/JAHS.61.022009 ]

  • 9D. Szubert, I. Asproulias, F. Grossi, R. Duvigneau, Y. Hoarau, M. Braza.

    Numerical study of the turbulent transonic interaction and transition location effect involving optimisation around a supercritical airfoil, in: European Journal of Mechanics - B/Fluids, January 2016, vol. 55, no 2.

  • 10G. Todarello, F. Vonck, S. Bourasseau, J. Peter, J.-A. Desideri.

    Finite-volume goal-oriented mesh adaptation for aerodynamics using functional derivative with respect to nodal coordinates, in: Journal of Computational Physics, May 2016, vol. 313, 21 p. [ DOI : 10.1016/j.jcp.2016.02.063 ]


International Conferences with Proceedings

  • 11A. Leroyer, P. Queutey, R. Duvigneau.

    Towards performance optimisation in kayak using CFD, in: 15ème Journées de l'Hydrodynamique, Brest, France, November 2016.

  • 12M. Sacher, F. Hauville, R. Duvigneau, O. Le Maître, N. AUBIN.

    Experimental and numerical optimizations of an upwind mainsail trimming, in: The 22nd Chesapeake Sailing Yacht Symposium, Chesapeake, United Kingdom, March 2016.


Conferences without Proceedings

  • 13M. Ayadi, A. Habbal, B. Yahyaoui.

    Modeling the dynamics of cell-sheet : From Fisher-KPP equation to bio-mechano-chemical systems: Fisher-KPP equation to study some predictions on the injured cell sheet, in: 13th African Conference on Research in Computer Science and Applied Mathematics, Autrans, Tunisia, October 2016.

  • 14G. Costeseque, A. DURET.

    Mesoscopic multiclass traffic flow modeling on multi-lane sections, in: 95th annual meeting transportation research board - TRB, Washington DC, United States, January 2016, 27 p.

  • 15R. Duvigneau, J.-A. Désidéri.

    Effective improvement of aerodynamic performance over a parameter interval, in: SIAM Uncertainty Quantification, Lausanne, Switzerland, March 2016.

  • 16A. Habbal, M. Kallel, R. Chamekh.

    A Nash-game approach to solve the Coupled problem of conductivity identification and data completion, in: PICOF 2016 Problèmes Inverses, Contrôle et Optimisation de Forme, Autrans, France, June 2016.

  • 17A. Habbal, M. Kallel, R. Chamekh, N. Zemzemi.

    Decentralized Strategies for Ill Posed Inverse Problems, in: 5th International Conference on Engineering Optimization, Iguassu Falls, Brazil, June 2016.

  • 18A. Leroyer, R. Duvigneau, P. Queutey, J.-P. Crochet, C. Rouffet.

    Toward Optimization Using Unsteady CFD Simulation Around Kayak Hull, in: 11th conference of the International Sports Engineering Association, ISEA 2016, Delft, Netherlands, July 2016.


Scientific Books (or Scientific Book chapters)

  • 19J.-A. Desideri, R. Duvigneau.

    Parametric optimization of pulsating jets in unsteady flow by Multiple-Gradient Descent Algorithm (MGDA), in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, J. Périaux, W. Fitzgibbon, B. Chetverushkin, O. Pironneau (editors), January 2017.


Internal Reports

Other Publications

  • 21C. Chalons, P. Goatin, L. M. Villada.

    High order numerical schemes for one-dimension non-local conservation laws, December 2016, working paper or preprint.

  • 22C. De Filippis, P. Goatin.

    The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, September 2016, working paper or preprint.

  • 23M. L. Delle Monache, P. Goatin.

    Stability estimates for scalar conservation laws with moving flux constraints, October 2016, working paper or preprint. [ DOI : 10.3934/xx.xx.xx.xx ]

  • 24M. L. Delle Monache, P. Goatin, B. Piccoli.

    Priority-based Riemann solver for traffic flow on networks , June 2016, working paper or preprint.

  • 25O. Kolb, S. Göttlich, P. Goatin.

    Capacity drop and traffic control for a second order traffic model, November 2016, working paper or preprint.

  • 26V. Picheny, M. Binois, A. Habbal.

    A Bayesian optimization approach to find Nash equilibria, December 2016, working paper or preprint.

  • 27A. Tordeux, G. Costeseque, M. Herty, A. Seyfried.

    From traffic and pedestrian follow-the-leader models with reaction time to first order convection-diffusion flow models, December 2016, working paper or preprint.

References in notes
  • 28R. Abgrall, P. M. Congedo.

    A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems, in: J. Comput. Physics, 2012.
  • 29A. Aggarwal, R. M. Colombo, P. Goatin.

    Nonlocal systems of conservation laws in several space dimensions, in: SIAM Journal on Numerical Analysis, 2015, vol. 52, no 2, pp. 963-983.

  • 30G. Alessandrini.

    Examples of instability in inverse boundary-value problems, in: Inverse Problems, 1997, vol. 13, no 4, pp. 887–897.

  • 31L. Almeida, P. Bagnerini, A. Habbal.

    Modeling actin cable contraction, in: Comput. Math. Appl., 2012, vol. 64, no 3, pp. 310–321.

  • 32L. Almeida, P. Bagnerini, A. Habbal, S. Noselli, F. Serman.

    A Mathematical Model for Dorsal Closure, in: Journal of Theoretical Biology, January 2011, vol. 268, no 1, pp. 105-119. [ DOI : 10.1016/j.jtbi.2010.09.029 ]

  • 33D. Amadori, W. Shen.

    An integro-differential conservation law arising in a model of granular flow, in: J. Hyperbolic Differ. Equ., 2012, vol. 9, no 1, pp. 105–131.
  • 34P. Amorim.

    On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, in: Bull. Braz. Math. Soc. (N.S.), 2012, vol. 43, no 4, pp. 599–614.
  • 35P. Amorim, R. Colombo, A. Teixeira.

    On the Numerical Integration of Scalar Nonlocal Conservation Laws, in: ESAIM M2AN, 2015, vol. 49, no 1, pp. 19–37.
  • 36M. Annunziato, A. Borzì.

    A Fokker-Planck control framework for multidimensional stochastic processes, in: Journal of Computational and Applied Mathematics, 2013, vol. 237, pp. 487-507.
  • 37A. Belme, F. Alauzet, A. Dervieux.

    Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, in: J. Comput. Physics, 2012, vol. 231, no 19, pp. 6323–6348.
  • 38S. Benzoni-Gavage, R. M. Colombo, P. Gwiazda.

    Measure valued solutions to conservation laws motivated by traffic modelling, in: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2006, vol. 462, no 2070, pp. 1791–1803.
  • 39E. Bertino, R. Duvigneau, P. Goatin.

    Uncertainties in traffic flow and model validation on GPS data, In preparation.
  • 40F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory.

    On nonlocal conservation laws modelling sedimentation, in: Nonlinearity, 2011, vol. 24, no 3, pp. 855–885.
  • 41J. Borggaard, J. Burns.

    A {PDE} Sensitivity Equation Method for Optimal Aerodynamic Design, in: Journal of Computational Physics, 1997, vol. 136, no 2, pp. 366 - 384. [ DOI : 10.1006/jcph.1997.5743 ]

  • 42A. Borzí, P. Goatin, A. Habbal, S. Roy.

    Crowd motion modeled by FPK constrained games, 2016.
  • 43R. Bourguet, M. Brazza, G. Harran, R. El Akoury.

    Anisotropic Organised Eddy Simulation for the prediction of non-equilibrium turbulent flows around bodies, in: J. of Fluids and Structures, 2008, vol. 24, no 8, pp. 1240–1251.
  • 44A. Bressan, S. Čanić, M. Garavello, M. Herty, B. Piccoli.

    Flows on networks: recent results and perspectives, in: EMS Surv. Math. Sci., 2014, vol. 1, no 1, pp. 47–111.
  • 45M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram.

    Mean field games with nonlinear mobilities in pedestrian dynamics, in: Discrete Contin. Dyn. Syst. Ser. B, 2014, vol. 19, no 5, pp. 1311–1333.
  • 46M. Burger, J. Haskovec, M.-T. Wolfram.

    Individual based and mean-field modelling of direct aggregation, in: Physica D, 2013, vol. 260, pp. 145–158.
  • 47A. Cabassi, P. Goatin.

    Validation of traffic flow models on processed GPS data, 2013, Research Report RR-8382.
  • 48J. A. Carrillo, S. Martin, M.-T. Wolfram.

    A local version of the Hughes model for pedestrian flow, 2015, Preprint.
  • 49C. Chalons, M. L. Delle Monache, P. Goatin.

    A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, 2015, Preprint.
  • 50C. Claudel, A. Bayen.

    Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods, in: Automatic Control, IEEE Transactions on, May 2010, vol. 55, no 5, pp. 1158-1174.
  • 51C. G. Claudel, A. M. Bayen.

    Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, in: SIAM J. Control Optim., 2011, vol. 49, no 2, pp. 383–402.
  • 52R. M. Colombo, M. Garavello, M. Lécureux-Mercier.

    A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, no 04, 1150023 p.
  • 53R. M. Colombo, M. Herty, M. Mercier.

    Control of the continuity equation with a non local flow, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 2, pp. 353–379.
  • 54R. M. Colombo, M. Lécureux-Mercier.

    Nonlocal crowd dynamics models for several populations, in: Acta Math. Sci. Ser. B Engl. Ed., 2012, vol. 32, no 1, pp. 177–196.
  • 55R. M. Colombo, F. Marcellini.

    A mixed ODE–PDE model for vehicular traffic, in: Mathematical Methods in the Applied Sciences, 2015, vol. 38, no 7, pp. 1292–1302.
  • 56R. M. Colombo, E. Rossi.

    On the micro-macro limit in traffic flow, in: Rend. Semin. Mat. Univ. Padova, 2014, vol. 131, pp. 217–235.
  • 57G. Costeseque, J.-P. Lebacque.

    Discussion about traffic junction modelling: conservation laws vs Hamilton-Jacobi equations, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 411–433.
  • 58G. Crippa, M. Lécureux-Mercier.

    Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, in: Nonlinear Differential Equations and Applications NoDEA, 2012, pp. 1-15.
  • 59E. Cristiani, B. Piccoli, A. Tosin.

    How can macroscopic models reveal self-organization in traffic flow?, in: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, Dec 2012, pp. 6989-6994.
  • 60E. Cristiani, B. Piccoli, A. Tosin.

    Multiscale modeling of pedestrian dynamics, MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014, vol. 12, xvi+260 p.
  • 61C. M. Dafermos.

    Solutions in L for a conservation law with memory, in: Analyse mathématique et applications, Montrouge, Gauthier-Villars, 1988, pp. 117–128.
  • 62P. Degond, J.-G. Liu, C. Ringhofer.

    Large-scale dynamics of mean-field games driven by local Nash equilibria, in: J. Nonlinear Sci., 2014, vol. 24, no 1, pp. 93–115.

  • 63M. L. Delle Monache, P. Goatin.

    A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 435–447.
  • 64M. L. Delle Monache, P. Goatin.

    Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, in: J. Differential Equations, 2014, vol. 257, no 11, pp. 4015–4029.
  • 65B. Després, G. Poëtte, D. Lucor.

    Robust uncertainty propagation in systems of conservation laws with the entropy closure method, in: Uncertainty quantification in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, 2013, vol. 92, pp. 105–149.
  • 66M. Di Francesco, M. D. Rosini.

    Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit, in: Archive for Rational Mechanics and Analysis, January 2015. [ DOI : 10.1007/s00205-015-0843-4 ]
  • 67R. J. DiPerna.

    Measure-valued solutions to conservation laws, in: Arch. Rational Mech. Anal., 1985, vol. 88, no 3, pp. 223–270.
  • 68C. Dogbé.

    Modeling crowd dynamics by the mean-field limit approach, in: Math. Comput. Modelling, 2010, vol. 52, no 9-10, pp. 1506–1520.
  • 69R. Duvigneau.

    A Sensitivity Equation Method for Unsteady Compressible Flows: Implementation and Verification, Inria Research Report No 8739, June 2015.
  • 70R. Duvigneau, D. Pelletier.

    A sensitivity equation method for fast evaluation of nearby flows and uncertainty analysis for shape parameters, in: Int. J. of Computational Fluid Dynamics, August 2006, vol. 20, no 7, pp. 497–512.
  • 71J.-A. Désidéri.

    Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, in: Comptes Rendus de l'Académie des Sciences Paris, 2012, vol. 350, pp. 313-318.

  • 72J.-A. Désidéri.

    Multiple-Gradient Descent Algorithm (MGDA) for Pareto-Front Identification, in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon, W.; Kuznetsov, Y.A.; Neittaanmäki, P.; Pironneau, O. Eds., Springer-Verlag, 2014, vol. 34, J. Périaux and R. Glowinski Jubilees.
  • 73J.-A. Désidéri.

    Révision de l'algorithme de descente à gradients multiples (MGDA) par orthogonalisation hiérarchique, Inria, April 2015, no 8710, https://hal.inria.fr/hal-01139994.
  • 74R. Erban, M. B. Flegg, G. A. Papoian.

    Multiscale stochastic reaction-diffusion modeling: application to actin dynamics in filopodia, in: Bull. Math. Biol., 2014, vol. 76, no 4, pp. 799–818.

  • 75R. Etikyala, S. Göttlich, A. Klar, S. Tiwari.

    Particle methods for pedestrian flow models: from microscopic to nonlocal continuum models, in: Math. Models Methods Appl. Sci., 2014, vol. 24, no 12, pp. 2503–2523.
  • 76R. Eymard, T. Gallouët, R. Herbin.

    Finite volume methods, in: Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020.
  • 77R. Farooqui, G. Fenteany.

    Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement, in: Journal of Cell Science, 2005, vol. 118, no Pt 1, pp. 51-63.
  • 78U. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor.

    Construction of approximate entropy measure valued solutions for systems of conservation laws, Seminar for Applied Mathematics, ETH Zürich, 2014, no 2014-33.
  • 79M. B. Flegg, S. Hellander, R. Erban.

    Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations, in: J. Comput. Phys., 2015, vol. 289, pp. 1–17.

  • 80F. Fleuret, D. Geman.

    Graded learning for object detection, in: Proceedings of the workshop on Statistical and Computational Theories of Vision of the IEEE international conference on Computer Vision and Pattern Recognition (CVPR/SCTV), 1999, vol. 2.
  • 81B. Franz, M. B. Flegg, S. J. Chapman, R. Erban.

    Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics, in: SIAM J. Appl. Math., 2013, vol. 73, no 3, pp. 1224–1247.

  • 82D. Gabay.

    Minimizing a differentiable function over a differential manifold, in: J. Optim. Theory Appl., 1982, vol. 37, no 2.
  • 83M. Garavello, B. Piccoli.

    Traffic flow on networks, AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, vol. 1, Conservation laws models.
  • 84M. Garavello, B. Piccoli.

    Coupling of microscopic and phase transition models at boundary, in: Netw. Heterog. Media, 2013, vol. 8, no 3, pp. 649–661.
  • 85E. Garnier, P. Pamart, J. Dandois, P. Sagaut.

    Evaluation of the unsteady RANS capabilities for separated flow control, in: Computers & Fluids, 2012, vol. 61, pp. 39-45.
  • 86P. Goatin, M. Mimault.

    A mixed system modeling two-directional pedestrian flows, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 375–392.
  • 87P. Goatin, F. Rossi.

    A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, 2015, Preprint.

  • 88A. Griewank.

    Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, in: Optimization Methods and Software, 1992, vol. 1, pp. 35-54.
  • 89M. Gröschel, A. Keimer, G. Leugering, Z. Wang.

    Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, in: SIAM J. Control Optim., 2014, vol. 52, no 4, pp. 2141–2163.
  • 90S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl.

    Modeling, simulation and validation of material flow on conveyor belts, in: Applied Mathematical Modelling, 2014, vol. 38, no 13, pp. 3295 - 3313.
  • 91A. Habbal, H. Barelli, G. Malandain.

    Assessing the ability of the 2D Fisher-KPP equation to model cell-sheet wound closure, in: Math. Biosci., 2014, vol. 252, pp. 45–59.

  • 92A. Habbal, M. Kallel.

    Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems, in: SIAM J. Control Optim., 2013, vol. 51, no 5, pp. 4066–4083.

  • 93X. Han, P. Sagaut, D. Lucor.

    On sensitivity of RANS simulations to uncertain turbulent inflow conditions, in: Computers & Fluids, 2012, vol. 61, no 2-5.
  • 94D. Helbing.

    Traffic and related self-driven many-particle systems, in: Rev. Mod. Phys., 2001, vol. 73, pp. 1067–1141.
  • 95D. Helbing, P. Molnar, I. J. Farkas, K. Bolay.

    Self-organizing pedestrian movement, in: Environment and planning B, 2001, vol. 28, no 3, pp. 361–384.
  • 96J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, A. M. Bayen.

    Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, in: Transportation Research Part C: Emerging Technologies, 2010, vol. 18, no 4, pp. 568–583.
  • 97S. P. Hoogendoorn, F. L. van Wageningen-Kessels, W. Daamen, D. C. Duives.

    Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, in: Physica A: Statistical Mechanics and its Applications, 2014, vol. 416, no 0, pp. 684 - 694.
  • 98H. Hristova, S. Etienne, D. Pelletier, J. Borggaard.

    A continuous sensitivity equation method for time-dependent incompressible laminar flows, in: Int. J. for Numerical Methods in Fluids, 2004, vol. 50, pp. 817-844.
  • 99C. Imbert, R. Monneau.

    Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, in: arXiv preprint arXiv:1306.2428, October 2014.
  • 100S. Jeon, H. Choi.

    Suboptimal feedback control of flow over a sphere, in: Int. J. of Heat and Fluid Flow, 2010, no 31.
  • 101M. Kallel, R. Aboulaich, A. Habbal, M. Moakher.

    A Nash-game approach to joint image restoration and segmentation, in: Appl. Math. Model., 2014, vol. 38, no 11-12, pp. 3038–3053.

  • 102O. Knio, O. L. Maitre.

    Uncertainty propagation in CFD using polynomial chaos decomposition, in: Fluid Dynamics Research, September 2006, vol. 38, no 9, pp. 616–640.
  • 103S. Kravanja, G. Turkalj, S. Šilih, T. Žula.

    Optimal design of single-story steel building structures based on parametric {MINLP} optimization, in: Journal of Constructional Steel Research, 2013, vol. 81, pp. 86 - 103. [ DOI : 10.1016/j.jcsr.2012.11.008 ]

  • 104A. Kurganov, A. Polizzi.

    Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrehenius Look-Ahead Dynamics, in: Netw. Heterog. Media, 2009, vol. 4, no 3, pp. 431-451.
  • 105A. Lachapelle, M.-T. Wolfram.

    On a mean field game approach modeling congestion and aversion in pedestrian crowds, in: Transportation Research Part B: Methodological, 2011, vol. 45, no 10, pp. 1572 - 1589.
  • 106J.-M. Lasry, P.-L. Lions.

    Mean field games, in: Jpn. J. Math., 2007, vol. 2, no 1, pp. 229–260.
  • 107M. J. Lighthill, G. B. Whitham.

    On kinematic waves. II. A theory of traffic flow on long crowded roads, in: Proc. Roy. Soc. London. Ser. A., 1955, vol. 229, pp. 317–345.
  • 108G. Lin, C.-H. Su, G. Karniadakis.

    Predicting shock dynamics in the presence of uncertainties, in: Journal of Computational Physics, 2006, no 217, pp. 260-276.
  • 109M. Martinelli, R. Duvigneau.

    On the use of second-order derivative and metamodel-based Monte-Carlo for uncertainty estimation in aerodynamics, in: Computers and Fluids, 2010, vol. 37, no 6.
  • 110C. Merritt, F. Forsberg, J. Liu, F. Kallel.

    In-vivo elastography in animal models: Feasibility studies, (abstract), in: J. Ultrasound Med., 2002, vol. 21, no 98.
  • 111S. Mishra, C. Schwab, J. Sukys.

    Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws, in: Lecture Notes in Computational Science and Engineering, 2013, vol. 92, pp. 225–294. [ DOI : 10.1007/978-3-319-00885-1_6 ]
  • 112W. Oberkampf, F. Blottner.

    Issues in Computational Fluid Dynamics code verification and validation, in: AIAA Journal, 1998, vol. 36, pp. 687–695.
  • 113B. Perthame.

    Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007, x+198 p.
  • 114B. Piccoli, F. Rossi.

    Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, in: Acta Appl. Math., 2013, vol. 124, pp. 73–105.
  • 115N. H. Pijls, B. de Bruyne, K. Peels, P. H. van der Voort, H. J. Bonnier, J. Bartunek, J. J. Koolen.

    Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses, in: New England Journal of Medicine, 1996, vol. 334, no 26, pp. 1703-1708, PMID: 8637515.

  • 116F. Poirion.

    Stochastic Multi Gradient Descent Algorithm, ONERA, July 2014.
  • 117M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, P. Silberzan.

    Collective migration of an epithelial monolayer in response to a model wound, in: Proceedings of the National Academy of Sciences, 2007, vol. 104, no 41, pp. 15988-15993. [ DOI : 10.1073/pnas.0705062104 ]
  • 118F. S. Priuli.

    First order mean field games in crowd dynamics, in: ArXiv e-prints, February 2014.
  • 119M. Putko, P. Newman, A. Taylor, L. Green.

    Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives, in: 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, June 2001, AIAA Paper 2001-2528.
  • 120C. Qi, K. Gallivan, P.-A. Absil.

    Riemannian BFGS Algorithm with Applications, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, W. Michiels (editors), Springer Berlin Heidelberg, 2010, pp. 183-192.

  • 121J. Reilly, W. Krichene, M. L. Delle Monache, S. Samaranayake, P. Goatin, A. M. Bayen.

    Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering, in: J. Optim. Theory Appl., 2015, vol. 167, no 2, pp. 733–760.
  • 122P. I. Richards.

    Shock waves on the highway, in: Operations Res., 1956, vol. 4, pp. 42–51.
  • 123P. Sagaut.

    Large Eddy Simulation for Incompressible Flows An Introduction, Springer Berlin Heidelberg, 2006.
  • 124J. Schaefer, T. West, S. Hosder, C. Rumsey, J.-R. Carlson, W. Kleb.

    Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows, in: 22nd AIAA Computational Fluid Dynamics Conference, 22-26 June 2015, Dallas, USA., 2015.
  • 125V. Schleper.

    A hybrid model for traffic flow and crowd dynamics with random individual properties, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 393-413.
  • 126A. Sopasakis, M. A. Katsoulakis.

    Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, in: SIAM J. Appl. Math., 2006, vol. 66, no 3, pp. 921–944 (electronic).
  • 127P. R. Spalart.

    Detached-Eddy Simulation, in: Annual Review of Fluid Mechanics, 2009, vol. 41, pp. 181-202.
  • 128S. Tokareva, S. Mishra, C. Schwab.

    High Order Stochastic Finite Volume Method for the Uncertainty Quantification in Hyperbolic Conservtion Laws with Random Initial Data and Flux Coefficients, 2012, Proc. ECCOMAS.
  • 129É. Turgeon, D. Pelletier, J. Borggaard.

    Sensitivity and Uncertainty Analysis for Variable Property Flows, in: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2001, AIAA Paper 2001-0139.
  • 130C. Villani.

    Topics in optimal transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003, vol. 58, xvi+370 p.
  • 131C. Villani.

    Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new.
  • 132R. Walter, L. Huyse.

    Uncertainty analysis for fluid mechanics with applications, ICASE, February 2002, no 2002–1.
  • 133D. Xiu, G. Karniadakis.

    Modeling uncertainty in flow simulations via generalized Polynomial Chaos, in: Journal of Computational Physics, 2003, no 187, pp. 137-167.
  • 134D. You, P. Moin.

    Active control of flow separation over an airfoil using synthetic jets, in: J. of Fluids and Structures, 2008, vol. 24, pp. 1349-1357.
  • 135A. Zerbinati, A. Minelli, I. Ghazlane, J.-A. Désidéri.

    Meta-Model-Assisted MGDA for Multi-Objective Functional Optimization, in: Computers and Fluids, 2014, vol. 102, pp. 116-130, http://www.sciencedirect.com/science/article/pii/S0045793014002576#.