EN FR
EN FR
Research Program
New Software and Platforms
Bibliography
Research Program
New Software and Platforms
Bibliography


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1A. Aggarwal, P. Goatin.

    Crowd Dynamics through Non-Local Conservation Laws, in: Boletim da Sociedade Brasileira de Matemática / Bulletin of the Brazilian Mathematical Society, 2016, vol. 47, pp. 37 - 50. [ DOI : 10.1007/s00574-016-0120-7 ]

    https://hal.inria.fr/hal-01402613
  • 2A. Benki, A. Habbal, G. Mathis.

    Computational design of an automotive twist beam, in: journal of computational design and engineering, 2016, vol. 3, pp. 215 - 225. [ DOI : 10.1016/j.jcde.2016.01.003 ]

    https://hal.inria.fr/hal-01405109
  • 3S. Blandin, P. Goatin.

    Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, in: Numerische Mathematik, 2016. [ DOI : 10.1007/s00211-015-0717-6 ]

    https://hal.inria.fr/hal-00954527
  • 4M. L. Delle Monache, P. Goatin.

    A numerical scheme for moving bottlenecks in traffic flow, in: Boletim da Sociedade Brasileira de Matemática / Bulletin of the Brazilian Mathematical Society, 2016, vol. 47, no 2, pp. 605–617. [ DOI : 10.1007/s00574-016-0172-8 ]

    https://hal.inria.fr/hal-01402618
  • 5R. Duvigneau, J. Labroquère, E. Guilmineau.

    Comparison of turbulence closures for optimized active control, in: Computers and Fluids, January 2016, no 124. [ DOI : 10.1016/j.compfluid.2015.10.011 ]

    https://hal.inria.fr/hal-01251823
  • 6P. Goatin, S. Scialanga.

    Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, in: Networks and Hetereogeneous Media, January 2016, vol. 11, no 1, pp. 107-121.

    https://hal.archives-ouvertes.fr/hal-01234584
  • 7J. A. LAVAL, G. Costeseque, B. Chilukuri.

    The impact of source terms in the variational representation of traffic flow, in: Transportation Research Part B: Methodological, December 2016. [ DOI : 10.1016/j.trb.2016.09.011 ]

    https://hal.inria.fr/hal-01281117
  • 8E. Roca Leon, A. Le Pape, M. Costes, J.-A. Desideri, D. Alfano.

    Concurrent Aerodynamic Optimization of Rotor Blades Using a Nash Game Method, in: Journal of the American Helicopter Society, April 2016, vol. 61, no 2, 13 p. [ DOI : 10.4050/JAHS.61.022009 ]

    https://hal.inria.fr/hal-01410101
  • 9D. Szubert, I. Asproulias, F. Grossi, R. Duvigneau, Y. Hoarau, M. Braza.

    Numerical study of the turbulent transonic interaction and transition location effect involving optimisation around a supercritical airfoil, in: European Journal of Mechanics - B/Fluids, January 2016, vol. 55, no 2.

    https://hal.inria.fr/hal-01251813
  • 10G. Todarello, F. Vonck, S. Bourasseau, J. Peter, J.-A. Desideri.

    Finite-volume goal-oriented mesh adaptation for aerodynamics using functional derivative with respect to nodal coordinates, in: Journal of Computational Physics, May 2016, vol. 313, 21 p. [ DOI : 10.1016/j.jcp.2016.02.063 ]

    https://hal.inria.fr/hal-01410153

International Conferences with Proceedings

  • 11A. Leroyer, P. Queutey, R. Duvigneau.

    Towards performance optimisation in kayak using CFD, in: 15ème Journées de l'Hydrodynamique, Brest, France, November 2016.

    https://hal.inria.fr/hal-01387792
  • 12M. Sacher, F. Hauville, R. Duvigneau, O. Le Maître, N. AUBIN.

    Experimental and numerical optimizations of an upwind mainsail trimming, in: The 22nd Chesapeake Sailing Yacht Symposium, Chesapeake, United Kingdom, March 2016.

    https://hal.inria.fr/hal-01387783

Conferences without Proceedings

  • 13M. Ayadi, A. Habbal, B. Yahyaoui.

    Modeling the dynamics of cell-sheet : From Fisher-KPP equation to bio-mechano-chemical systems: Fisher-KPP equation to study some predictions on the injured cell sheet, in: 13th African Conference on Research in Computer Science and Applied Mathematics, Autrans, Tunisia, October 2016.

    https://hal.inria.fr/hal-01405266
  • 14G. Costeseque, A. DURET.

    Mesoscopic multiclass traffic flow modeling on multi-lane sections, in: 95th annual meeting transportation research board - TRB, Washington DC, United States, January 2016, 27 p.

    https://hal.archives-ouvertes.fr/hal-01250438
  • 15R. Duvigneau, J.-A. Désidéri.

    Effective improvement of aerodynamic performance over a parameter interval, in: SIAM Uncertainty Quantification, Lausanne, Switzerland, March 2016.

    https://hal.inria.fr/hal-01387768
  • 16A. Habbal, M. Kallel, R. Chamekh.

    A Nash-game approach to solve the Coupled problem of conductivity identification and data completion, in: PICOF 2016 Problèmes Inverses, Contrôle et Optimisation de Forme, Autrans, France, June 2016.

    https://hal.inria.fr/hal-01405232
  • 17A. Habbal, M. Kallel, R. Chamekh, N. Zemzemi.

    Decentralized Strategies for Ill Posed Inverse Problems, in: 5th International Conference on Engineering Optimization, Iguassu Falls, Brazil, June 2016.

    https://hal.inria.fr/hal-01405282
  • 18A. Leroyer, R. Duvigneau, P. Queutey, J.-P. Crochet, C. Rouffet.

    Toward Optimization Using Unsteady CFD Simulation Around Kayak Hull, in: 11th conference of the International Sports Engineering Association, ISEA 2016, Delft, Netherlands, July 2016.

    https://hal.inria.fr/hal-01387789

Scientific Books (or Scientific Book chapters)

  • 19J.-A. Desideri, R. Duvigneau.

    Parametric optimization of pulsating jets in unsteady flow by Multiple-Gradient Descent Algorithm (MGDA), in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, J. Périaux, W. Fitzgibbon, B. Chetverushkin, O. Pironneau (editors), January 2017.

    https://hal.inria.fr/hal-01414741

Internal Reports

Other Publications

  • 21C. Chalons, P. Goatin, L. M. Villada.

    High order numerical schemes for one-dimension non-local conservation laws, December 2016, working paper or preprint.

    https://hal.inria.fr/hal-01418749
  • 22C. De Filippis, P. Goatin.

    The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, September 2016, working paper or preprint.

    https://hal.inria.fr/hal-01362504
  • 23M. L. Delle Monache, P. Goatin.

    Stability estimates for scalar conservation laws with moving flux constraints, October 2016, working paper or preprint. [ DOI : 10.3934/xx.xx.xx.xx ]

    https://hal.inria.fr/hal-01380368
  • 24M. L. Delle Monache, P. Goatin, B. Piccoli.

    Priority-based Riemann solver for traffic flow on networks , June 2016, working paper or preprint.

    https://hal.inria.fr/hal-01336823
  • 25O. Kolb, S. Göttlich, P. Goatin.

    Capacity drop and traffic control for a second order traffic model, November 2016, working paper or preprint.

    https://hal.inria.fr/hal-01402608
  • 26V. Picheny, M. Binois, A. Habbal.

    A Bayesian optimization approach to find Nash equilibria, December 2016, working paper or preprint.

    https://hal.inria.fr/hal-01405074
  • 27A. Tordeux, G. Costeseque, M. Herty, A. Seyfried.

    From traffic and pedestrian follow-the-leader models with reaction time to first order convection-diffusion flow models, December 2016, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01414839
References in notes
  • 28R. Abgrall, P. M. Congedo.

    A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems, in: J. Comput. Physics, 2012.
  • 29A. Aggarwal, R. M. Colombo, P. Goatin.

    Nonlocal systems of conservation laws in several space dimensions, in: SIAM Journal on Numerical Analysis, 2015, vol. 52, no 2, pp. 963-983.

    https://hal.inria.fr/hal-01016784
  • 30G. Alessandrini.

    Examples of instability in inverse boundary-value problems, in: Inverse Problems, 1997, vol. 13, no 4, pp. 887–897.

    http://dx.doi.org/10.1088/0266-5611/13/4/001
  • 31L. Almeida, P. Bagnerini, A. Habbal.

    Modeling actin cable contraction, in: Comput. Math. Appl., 2012, vol. 64, no 3, pp. 310–321.

    http://dx.doi.org/10.1016/j.camwa.2012.02.041
  • 32L. Almeida, P. Bagnerini, A. Habbal, S. Noselli, F. Serman.

    A Mathematical Model for Dorsal Closure, in: Journal of Theoretical Biology, January 2011, vol. 268, no 1, pp. 105-119. [ DOI : 10.1016/j.jtbi.2010.09.029 ]

    http://hal.inria.fr/inria-00544350/en
  • 33D. Amadori, W. Shen.

    An integro-differential conservation law arising in a model of granular flow, in: J. Hyperbolic Differ. Equ., 2012, vol. 9, no 1, pp. 105–131.
  • 34P. Amorim.

    On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, in: Bull. Braz. Math. Soc. (N.S.), 2012, vol. 43, no 4, pp. 599–614.
  • 35P. Amorim, R. Colombo, A. Teixeira.

    On the Numerical Integration of Scalar Nonlocal Conservation Laws, in: ESAIM M2AN, 2015, vol. 49, no 1, pp. 19–37.
  • 36M. Annunziato, A. Borzì.

    A Fokker-Planck control framework for multidimensional stochastic processes, in: Journal of Computational and Applied Mathematics, 2013, vol. 237, pp. 487-507.
  • 37A. Belme, F. Alauzet, A. Dervieux.

    Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, in: J. Comput. Physics, 2012, vol. 231, no 19, pp. 6323–6348.
  • 38S. Benzoni-Gavage, R. M. Colombo, P. Gwiazda.

    Measure valued solutions to conservation laws motivated by traffic modelling, in: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2006, vol. 462, no 2070, pp. 1791–1803.
  • 39E. Bertino, R. Duvigneau, P. Goatin.

    Uncertainties in traffic flow and model validation on GPS data, In preparation.
  • 40F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory.

    On nonlocal conservation laws modelling sedimentation, in: Nonlinearity, 2011, vol. 24, no 3, pp. 855–885.
  • 41J. Borggaard, J. Burns.

    A {PDE} Sensitivity Equation Method for Optimal Aerodynamic Design, in: Journal of Computational Physics, 1997, vol. 136, no 2, pp. 366 - 384. [ DOI : 10.1006/jcph.1997.5743 ]

    http://www.sciencedirect.com/science/article/pii/S0021999197957430
  • 42A. Borzí, P. Goatin, A. Habbal, S. Roy.

    Crowd motion modeled by FPK constrained games, 2016.
  • 43R. Bourguet, M. Brazza, G. Harran, R. El Akoury.

    Anisotropic Organised Eddy Simulation for the prediction of non-equilibrium turbulent flows around bodies, in: J. of Fluids and Structures, 2008, vol. 24, no 8, pp. 1240–1251.
  • 44A. Bressan, S. Čanić, M. Garavello, M. Herty, B. Piccoli.

    Flows on networks: recent results and perspectives, in: EMS Surv. Math. Sci., 2014, vol. 1, no 1, pp. 47–111.
  • 45M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram.

    Mean field games with nonlinear mobilities in pedestrian dynamics, in: Discrete Contin. Dyn. Syst. Ser. B, 2014, vol. 19, no 5, pp. 1311–1333.
  • 46M. Burger, J. Haskovec, M.-T. Wolfram.

    Individual based and mean-field modelling of direct aggregation, in: Physica D, 2013, vol. 260, pp. 145–158.
  • 47A. Cabassi, P. Goatin.

    Validation of traffic flow models on processed GPS data, 2013, Research Report RR-8382.
  • 48J. A. Carrillo, S. Martin, M.-T. Wolfram.

    A local version of the Hughes model for pedestrian flow, 2015, Preprint.
  • 49C. Chalons, M. L. Delle Monache, P. Goatin.

    A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, 2015, Preprint.
  • 50C. Claudel, A. Bayen.

    Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods, in: Automatic Control, IEEE Transactions on, May 2010, vol. 55, no 5, pp. 1158-1174.
  • 51C. G. Claudel, A. M. Bayen.

    Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, in: SIAM J. Control Optim., 2011, vol. 49, no 2, pp. 383–402.
  • 52R. M. Colombo, M. Garavello, M. Lécureux-Mercier.

    A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, no 04, 1150023 p.
  • 53R. M. Colombo, M. Herty, M. Mercier.

    Control of the continuity equation with a non local flow, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 2, pp. 353–379.
  • 54R. M. Colombo, M. Lécureux-Mercier.

    Nonlocal crowd dynamics models for several populations, in: Acta Math. Sci. Ser. B Engl. Ed., 2012, vol. 32, no 1, pp. 177–196.
  • 55R. M. Colombo, F. Marcellini.

    A mixed ODE–PDE model for vehicular traffic, in: Mathematical Methods in the Applied Sciences, 2015, vol. 38, no 7, pp. 1292–1302.
  • 56R. M. Colombo, E. Rossi.

    On the micro-macro limit in traffic flow, in: Rend. Semin. Mat. Univ. Padova, 2014, vol. 131, pp. 217–235.
  • 57G. Costeseque, J.-P. Lebacque.

    Discussion about traffic junction modelling: conservation laws vs Hamilton-Jacobi equations, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 411–433.
  • 58G. Crippa, M. Lécureux-Mercier.

    Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, in: Nonlinear Differential Equations and Applications NoDEA, 2012, pp. 1-15.
  • 59E. Cristiani, B. Piccoli, A. Tosin.

    How can macroscopic models reveal self-organization in traffic flow?, in: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, Dec 2012, pp. 6989-6994.
  • 60E. Cristiani, B. Piccoli, A. Tosin.

    Multiscale modeling of pedestrian dynamics, MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014, vol. 12, xvi+260 p.
  • 61C. M. Dafermos.

    Solutions in L for a conservation law with memory, in: Analyse mathématique et applications, Montrouge, Gauthier-Villars, 1988, pp. 117–128.
  • 62P. Degond, J.-G. Liu, C. Ringhofer.

    Large-scale dynamics of mean-field games driven by local Nash equilibria, in: J. Nonlinear Sci., 2014, vol. 24, no 1, pp. 93–115.

    http://dx.doi.org/10.1007/s00332-013-9185-2
  • 63M. L. Delle Monache, P. Goatin.

    A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 435–447.
  • 64M. L. Delle Monache, P. Goatin.

    Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, in: J. Differential Equations, 2014, vol. 257, no 11, pp. 4015–4029.
  • 65B. Després, G. Poëtte, D. Lucor.

    Robust uncertainty propagation in systems of conservation laws with the entropy closure method, in: Uncertainty quantification in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, 2013, vol. 92, pp. 105–149.
  • 66M. Di Francesco, M. D. Rosini.

    Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit, in: Archive for Rational Mechanics and Analysis, January 2015. [ DOI : 10.1007/s00205-015-0843-4 ]
  • 67R. J. DiPerna.

    Measure-valued solutions to conservation laws, in: Arch. Rational Mech. Anal., 1985, vol. 88, no 3, pp. 223–270.
  • 68C. Dogbé.

    Modeling crowd dynamics by the mean-field limit approach, in: Math. Comput. Modelling, 2010, vol. 52, no 9-10, pp. 1506–1520.
  • 69R. Duvigneau.

    A Sensitivity Equation Method for Unsteady Compressible Flows: Implementation and Verification, Inria Research Report No 8739, June 2015.
  • 70R. Duvigneau, D. Pelletier.

    A sensitivity equation method for fast evaluation of nearby flows and uncertainty analysis for shape parameters, in: Int. J. of Computational Fluid Dynamics, August 2006, vol. 20, no 7, pp. 497–512.
  • 71J.-A. Désidéri.

    Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, in: Comptes Rendus de l'Académie des Sciences Paris, 2012, vol. 350, pp. 313-318.

    http://dx.doi.org/10.1016/j.crma.2012.03.014
  • 72J.-A. Désidéri.

    Multiple-Gradient Descent Algorithm (MGDA) for Pareto-Front Identification, in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon, W.; Kuznetsov, Y.A.; Neittaanmäki, P.; Pironneau, O. Eds., Springer-Verlag, 2014, vol. 34, J. Périaux and R. Glowinski Jubilees.
  • 73J.-A. Désidéri.

    Révision de l'algorithme de descente à gradients multiples (MGDA) par orthogonalisation hiérarchique, Inria, April 2015, no 8710, https://hal.inria.fr/hal-01139994.
  • 74R. Erban, M. B. Flegg, G. A. Papoian.

    Multiscale stochastic reaction-diffusion modeling: application to actin dynamics in filopodia, in: Bull. Math. Biol., 2014, vol. 76, no 4, pp. 799–818.

    http://dx.doi.org/10.1007/s11538-013-9844-3
  • 75R. Etikyala, S. Göttlich, A. Klar, S. Tiwari.

    Particle methods for pedestrian flow models: from microscopic to nonlocal continuum models, in: Math. Models Methods Appl. Sci., 2014, vol. 24, no 12, pp. 2503–2523.
  • 76R. Eymard, T. Gallouët, R. Herbin.

    Finite volume methods, in: Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020.
  • 77R. Farooqui, G. Fenteany.

    Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement, in: Journal of Cell Science, 2005, vol. 118, no Pt 1, pp. 51-63.
  • 78U. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor.

    Construction of approximate entropy measure valued solutions for systems of conservation laws, Seminar for Applied Mathematics, ETH Zürich, 2014, no 2014-33.
  • 79M. B. Flegg, S. Hellander, R. Erban.

    Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations, in: J. Comput. Phys., 2015, vol. 289, pp. 1–17.

    http://dx.doi.org/10.1016/j.jcp.2015.01.030
  • 80F. Fleuret, D. Geman.

    Graded learning for object detection, in: Proceedings of the workshop on Statistical and Computational Theories of Vision of the IEEE international conference on Computer Vision and Pattern Recognition (CVPR/SCTV), 1999, vol. 2.
  • 81B. Franz, M. B. Flegg, S. J. Chapman, R. Erban.

    Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics, in: SIAM J. Appl. Math., 2013, vol. 73, no 3, pp. 1224–1247.

    http://dx.doi.org/10.1137/120882469
  • 82D. Gabay.

    Minimizing a differentiable function over a differential manifold, in: J. Optim. Theory Appl., 1982, vol. 37, no 2.
  • 83M. Garavello, B. Piccoli.

    Traffic flow on networks, AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, vol. 1, Conservation laws models.
  • 84M. Garavello, B. Piccoli.

    Coupling of microscopic and phase transition models at boundary, in: Netw. Heterog. Media, 2013, vol. 8, no 3, pp. 649–661.
  • 85E. Garnier, P. Pamart, J. Dandois, P. Sagaut.

    Evaluation of the unsteady RANS capabilities for separated flow control, in: Computers & Fluids, 2012, vol. 61, pp. 39-45.
  • 86P. Goatin, M. Mimault.

    A mixed system modeling two-directional pedestrian flows, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 375–392.
  • 87P. Goatin, F. Rossi.

    A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, 2015, Preprint.

    http://arxiv.org/abs/1510.04461
  • 88A. Griewank.

    Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, in: Optimization Methods and Software, 1992, vol. 1, pp. 35-54.
  • 89M. Gröschel, A. Keimer, G. Leugering, Z. Wang.

    Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, in: SIAM J. Control Optim., 2014, vol. 52, no 4, pp. 2141–2163.
  • 90S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl.

    Modeling, simulation and validation of material flow on conveyor belts, in: Applied Mathematical Modelling, 2014, vol. 38, no 13, pp. 3295 - 3313.
  • 91A. Habbal, H. Barelli, G. Malandain.

    Assessing the ability of the 2D Fisher-KPP equation to model cell-sheet wound closure, in: Math. Biosci., 2014, vol. 252, pp. 45–59.

    http://dx.doi.org/10.1016/j.mbs.2014.03.009
  • 92A. Habbal, M. Kallel.

    Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems, in: SIAM J. Control Optim., 2013, vol. 51, no 5, pp. 4066–4083.

    http://dx.doi.org/10.1137/120869808
  • 93X. Han, P. Sagaut, D. Lucor.

    On sensitivity of RANS simulations to uncertain turbulent inflow conditions, in: Computers & Fluids, 2012, vol. 61, no 2-5.
  • 94D. Helbing.

    Traffic and related self-driven many-particle systems, in: Rev. Mod. Phys., 2001, vol. 73, pp. 1067–1141.
  • 95D. Helbing, P. Molnar, I. J. Farkas, K. Bolay.

    Self-organizing pedestrian movement, in: Environment and planning B, 2001, vol. 28, no 3, pp. 361–384.
  • 96J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, A. M. Bayen.

    Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, in: Transportation Research Part C: Emerging Technologies, 2010, vol. 18, no 4, pp. 568–583.
  • 97S. P. Hoogendoorn, F. L. van Wageningen-Kessels, W. Daamen, D. C. Duives.

    Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, in: Physica A: Statistical Mechanics and its Applications, 2014, vol. 416, no 0, pp. 684 - 694.
  • 98H. Hristova, S. Etienne, D. Pelletier, J. Borggaard.

    A continuous sensitivity equation method for time-dependent incompressible laminar flows, in: Int. J. for Numerical Methods in Fluids, 2004, vol. 50, pp. 817-844.
  • 99C. Imbert, R. Monneau.

    Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, in: arXiv preprint arXiv:1306.2428, October 2014.
  • 100S. Jeon, H. Choi.

    Suboptimal feedback control of flow over a sphere, in: Int. J. of Heat and Fluid Flow, 2010, no 31.
  • 101M. Kallel, R. Aboulaich, A. Habbal, M. Moakher.

    A Nash-game approach to joint image restoration and segmentation, in: Appl. Math. Model., 2014, vol. 38, no 11-12, pp. 3038–3053.

    http://dx.doi.org/10.1016/j.apm.2013.11.034
  • 102O. Knio, O. L. Maitre.

    Uncertainty propagation in CFD using polynomial chaos decomposition, in: Fluid Dynamics Research, September 2006, vol. 38, no 9, pp. 616–640.
  • 103S. Kravanja, G. Turkalj, S. Šilih, T. Žula.

    Optimal design of single-story steel building structures based on parametric {MINLP} optimization, in: Journal of Constructional Steel Research, 2013, vol. 81, pp. 86 - 103. [ DOI : 10.1016/j.jcsr.2012.11.008 ]

    http://www.sciencedirect.com/science/article/pii/S0143974X12002490
  • 104A. Kurganov, A. Polizzi.

    Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrehenius Look-Ahead Dynamics, in: Netw. Heterog. Media, 2009, vol. 4, no 3, pp. 431-451.
  • 105A. Lachapelle, M.-T. Wolfram.

    On a mean field game approach modeling congestion and aversion in pedestrian crowds, in: Transportation Research Part B: Methodological, 2011, vol. 45, no 10, pp. 1572 - 1589.
  • 106J.-M. Lasry, P.-L. Lions.

    Mean field games, in: Jpn. J. Math., 2007, vol. 2, no 1, pp. 229–260.
  • 107M. J. Lighthill, G. B. Whitham.

    On kinematic waves. II. A theory of traffic flow on long crowded roads, in: Proc. Roy. Soc. London. Ser. A., 1955, vol. 229, pp. 317–345.
  • 108G. Lin, C.-H. Su, G. Karniadakis.

    Predicting shock dynamics in the presence of uncertainties, in: Journal of Computational Physics, 2006, no 217, pp. 260-276.
  • 109M. Martinelli, R. Duvigneau.

    On the use of second-order derivative and metamodel-based Monte-Carlo for uncertainty estimation in aerodynamics, in: Computers and Fluids, 2010, vol. 37, no 6.
  • 110C. Merritt, F. Forsberg, J. Liu, F. Kallel.

    In-vivo elastography in animal models: Feasibility studies, (abstract), in: J. Ultrasound Med., 2002, vol. 21, no 98.
  • 111S. Mishra, C. Schwab, J. Sukys.

    Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws, in: Lecture Notes in Computational Science and Engineering, 2013, vol. 92, pp. 225–294. [ DOI : 10.1007/978-3-319-00885-1_6 ]
  • 112W. Oberkampf, F. Blottner.

    Issues in Computational Fluid Dynamics code verification and validation, in: AIAA Journal, 1998, vol. 36, pp. 687–695.
  • 113B. Perthame.

    Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007, x+198 p.
  • 114B. Piccoli, F. Rossi.

    Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, in: Acta Appl. Math., 2013, vol. 124, pp. 73–105.
  • 115N. H. Pijls, B. de Bruyne, K. Peels, P. H. van der Voort, H. J. Bonnier, J. Bartunek, J. J. Koolen.

    Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses, in: New England Journal of Medicine, 1996, vol. 334, no 26, pp. 1703-1708, PMID: 8637515.

    http://dx.doi.org/10.1056/NEJM199606273342604
  • 116F. Poirion.

    Stochastic Multi Gradient Descent Algorithm, ONERA, July 2014.
  • 117M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, P. Silberzan.

    Collective migration of an epithelial monolayer in response to a model wound, in: Proceedings of the National Academy of Sciences, 2007, vol. 104, no 41, pp. 15988-15993. [ DOI : 10.1073/pnas.0705062104 ]
  • 118F. S. Priuli.

    First order mean field games in crowd dynamics, in: ArXiv e-prints, February 2014.
  • 119M. Putko, P. Newman, A. Taylor, L. Green.

    Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives, in: 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, June 2001, AIAA Paper 2001-2528.
  • 120C. Qi, K. Gallivan, P.-A. Absil.

    Riemannian BFGS Algorithm with Applications, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, W. Michiels (editors), Springer Berlin Heidelberg, 2010, pp. 183-192.

    http://dx.doi.org/10.1007/978-3-642-12598-0_16
  • 121J. Reilly, W. Krichene, M. L. Delle Monache, S. Samaranayake, P. Goatin, A. M. Bayen.

    Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering, in: J. Optim. Theory Appl., 2015, vol. 167, no 2, pp. 733–760.
  • 122P. I. Richards.

    Shock waves on the highway, in: Operations Res., 1956, vol. 4, pp. 42–51.
  • 123P. Sagaut.

    Large Eddy Simulation for Incompressible Flows An Introduction, Springer Berlin Heidelberg, 2006.
  • 124J. Schaefer, T. West, S. Hosder, C. Rumsey, J.-R. Carlson, W. Kleb.

    Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows, in: 22nd AIAA Computational Fluid Dynamics Conference, 22-26 June 2015, Dallas, USA., 2015.
  • 125V. Schleper.

    A hybrid model for traffic flow and crowd dynamics with random individual properties, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 393-413.
  • 126A. Sopasakis, M. A. Katsoulakis.

    Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, in: SIAM J. Appl. Math., 2006, vol. 66, no 3, pp. 921–944 (electronic).
  • 127P. R. Spalart.

    Detached-Eddy Simulation, in: Annual Review of Fluid Mechanics, 2009, vol. 41, pp. 181-202.
  • 128S. Tokareva, S. Mishra, C. Schwab.

    High Order Stochastic Finite Volume Method for the Uncertainty Quantification in Hyperbolic Conservtion Laws with Random Initial Data and Flux Coefficients, 2012, Proc. ECCOMAS.
  • 129É. Turgeon, D. Pelletier, J. Borggaard.

    Sensitivity and Uncertainty Analysis for Variable Property Flows, in: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2001, AIAA Paper 2001-0139.
  • 130C. Villani.

    Topics in optimal transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003, vol. 58, xvi+370 p.
  • 131C. Villani.

    Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new.
  • 132R. Walter, L. Huyse.

    Uncertainty analysis for fluid mechanics with applications, ICASE, February 2002, no 2002–1.
  • 133D. Xiu, G. Karniadakis.

    Modeling uncertainty in flow simulations via generalized Polynomial Chaos, in: Journal of Computational Physics, 2003, no 187, pp. 137-167.
  • 134D. You, P. Moin.

    Active control of flow separation over an airfoil using synthetic jets, in: J. of Fluids and Structures, 2008, vol. 24, pp. 1349-1357.
  • 135A. Zerbinati, A. Minelli, I. Ghazlane, J.-A. Désidéri.

    Meta-Model-Assisted MGDA for Multi-Objective Functional Optimization, in: Computers and Fluids, 2014, vol. 102, pp. 116-130, http://www.sciencedirect.com/science/article/pii/S0045793014002576#.