Major publications by the team in recent years
  • 1D. Attali, U. Bauer, O. Devillers, M. Glisse, A. Lieutier.

    Homological Reconstruction and Simplification in R3, in: Computational Geometry, 2014. [ DOI : 10.1016/j.comgeo.2014.08.010 ]

  • 2J. Boissonnat, R. Dyer, A. Ghosh.

    Stability of Delaunay-type structures for manifolds: [extended abstract], in: Symposium on Computational Geometry 2012, SoCG '12, Chapel Hill, NC, USA, June 17-20, 2012, 2012, pp. 229–238.

  • 3J.-D. Boissonnat, A. Ghosh.

    Manifold reconstruction using tangential Delaunay complexes, in: Discrete and Computational Geometry, January 2014, vol. 51, no 1, pp. 221-267. [ DOI : 10.1007/s00454-013-9557-2 ]

  • 4J. Boissonnat, C. Maria.

    The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, in: Algorithmica, 2014, vol. 70, no 3, pp. 406–427.

  • 5F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, S. Oudot.

    Proximity of Persistence Modules and Their Diagrams, in: Proc. 25th Annual Symposium on Computational Geometry, 2009, pp. 237–246. [ DOI : 10.1145/1542362.1542407 ]

  • 6F. Chazal, D. Cohen-Steiner, A. Lieutier.

    A Sampling Theory for Compact Sets in Euclidean Space, in: Discrete Comput. Geom., 2009, vol. 41, no 3, pp. 461–479.

  • 7F. Chazal, D. Cohen-Steiner, Q. Mérigot.

    Geometric Inference for Measures based on Distance Functions, in: Foundations of Computational Mathematics, 2011, vol. 11, no 6, pp. 733-751, RR-6930. [ DOI : 10.1007/s10208-011-9098-0 ]

  • 8F. De Goes, D. Cohen-Steiner, P. Alliez, M. Desbrun.

    An Optimal Transport Approach to Robust Reconstruction and Simplification of 2D Shapes, in: Computer Graphics Forum, 2011, vol. 30, no 5, pp. 1593–1602, Special issue for EUROGRAPHICS Symposium on Geometry Processing.

  • 9L. J. Guibas, S. Y. Oudot, P. Skraba, F. Chazal.

    Persistence-Based Clustering in Riemannian Manifolds, in: Journal of the ACM, November 2013, vol. 60, no 6, 38 p.

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

  • 13D. Attali, O. Devillers, M. Glisse, S. Lazard.

    Recognizing Shrinkable Complexes Is NP-Complete, in: Journal of Computational Geometry, 2016, vol. 7, no 1, pp. 430–443. [ DOI : 10.20382/jocg.v7i1a18 ]

  • 14J.-D. Boissonnat, D. Mazauric.

    On the complexity of the representation of simplicial complexes by trees, in: Theoretical Computer Science, February 2016, vol. 617, 17 p. [ DOI : 10.1016/j.tcs.2015.12.034 ]

  • 15J.-D. Boissonnat, K. C. Srikanta, S. Tavenas.

    Building Efficient and Compact Data Structures for Simplicial Complexe, in: Algorithmica, September 2016. [ DOI : 10.1007/s00453-016-0207-y ]

  • 16P. Bubenik, D. Pawel.

    A persistence landscapes toolbox for topological statistics, in: Journal of Symbolic Computation, 2016.

  • 17M. Buchet, F. Chazal, S. Oudot, D. Sheehy.

    Efficient and Robust Persistent Homology for Measures, in: Computational Geometry, 2016, vol. 58. [ DOI : 10.1016/j.comgeo.2016.07.001 ]

  • 18F. Chazal, B. Fasy, F. Lecci, B. Michel, A. Rinaldo, L. Wasserman.

    Robust Topological Inference: Distance To a Measure and Kernel Distance, in: Journal of Machine Learning Research, 2017, forthcoming.

  • 19F. Chazal, P. Massart, B. Michel.

    Rates of convergence for robust geometric inference, in: Electronic journal of statistics , 2016, vol. 10, no 2, 44 p.

  • 20O. Devillers, M. Glisse, X. Goaoc, R. Thomasse.

    Smoothed complexity of convex hulls by witnesses and collectors, in: Journal of Computational Geometry, 2016, vol. 7, no 2, pp. 101-144. [ DOI : 10.20382/jocg.v7i2a6 ]

  • 21K. Dutta, E. Ezra, A. Ghosh.

    Two proofs for Shallow Packings , in: Discrete and Computational Geometry, December 2016. [ DOI : 10.1007/s00454-016-9824-0 ]


International Conferences with Proceedings

  • 22J.-D. Boissonnat, K. C. Srikanta.

    An Efficient Representation for Filtrations of Simplicial Complexes, in: Symposium on Discrete Algorithms SODA 2017, Barcelona, France, January 2017.

  • 23T. Bonis, M. Ovsjanikov, S. Oudot, F. Chazal.

    Persistence-based Pooling for Shape Pose Recognition, in: 6th International Workshop on Computational Topology in Image Context (CTIC 2016), Marseille, France, CTIC 2016 Proceedings of the 6th International Workshop on Computational Topology in Image Context, June 2016, vol. 9667.

  • 24D. Bremner, O. Devillers, M. Glisse, S. Lazard, G. Liotta, T. Mchedlidze, S. Whitesides, S. Wismath.

    Monotone Simultaneous Paths Embeddings in d, in: 24th International Symposium on Graph Drawing & Network Visualization, Athens, Greece, Proceedings of 24th International Symposium on Graph Drawing & Network Visualization, Springer, September 2016, vol. 9801.

  • 25M. Carrière, S. Oudot.

    Structure and Stability of the 1-Dimensional Mapper, in: Proceedings of the International Symposium on Computational Geometry, Boston, United States, June 2016, Conference version.

  • 26F. Chazal, I. Giulini, B. Michel.

    Data driven estimation of Laplace-Beltrami operator, in: 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December 2016.

  • 27M. Rouxel-Labbé, M. Wintraecken, J.-D. Boissonnat.

    Discretized Riemannian Delaunay triangulations, in: Proceedings 25th International Meshing Roundtable (IMR25), Washington DC, United States, Elsevier, September 2016.


Conferences without Proceedings

  • 28K. Dutta, A. Ghosh.

    On Subgraphs of Bounded Degeneracy in Hypergraphs, in: 42nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2016), Istanbul, Turkey, June 2016.


Scientific Books (or Scientific Book chapters)

  • 29F. Chazal, S. Y. Oudot, M. Glisse, V. De Silva.

    The Structure and Stability of Persistence Modules, SpringerBriefs in Mathematics, Springer Verlag, 2016, VII, 116 p.

  • 30F. Chazal.

    High-Dimensional Topological Data Analysis, in: 3rd Handbook of Discrete and Computational Geometry, CRC Press, 2016, forthcoming.

  • 31F. Chazal, D. Cohen-Steiner, A. Lieutier, Q. Merigot, B. Thibert.

    Inference of curvature using tubular neighborhoods, in: Lecture Notes in Mathematics, 2017, forthcoming.


Other Publications