Section: Overall Objectives
Overall Objectives
The research group that we have entitled fluminance from a contraction between the words “Fluid” and “Luminance” is dedicated to the extraction of information on fluid flows from image sequences and to the development of tools for the analysis and control of these flows. The objectives of the group are at the frontiers of several important domains that range from fluid mechanics to geophysics. One of the main originality of the fluminance group is to combine cutting-edge researches on data-assimilation and flow numerical modeling with an ability to conduct proper intensive experimental validations on prototype flows mastered in laboratory. The scientific objectives decompose in four main themes:
-
Fluid flows characterization from images
In this first axis, we aim at providing accurate measurements and consistent analysis of complex fluid flows through image analysis techniques.The application domain ranges from industrial processes and experimental fluid mechanics to environmental sciences. This theme includes also the use of non-conventional imaging techniques such as Schlieren techniques, Shadowgraphs, holography. The objective will be here to go towards 3D dense velocity measurements.
-
Coupling dynamical model and image data
We focus here on the study, through image data, of complex and partially known fluid flows involving complex boundary conditions, multi-phase fluids, fluids and structures interaction problems. Our credo is that image analysis can provide sufficiently fine observations on small and medium scales to construct models which, applied at medium and large scale, account accurately for a wider range of the dynamics scales. The image data and a sound modeling of the dynamical uncertainty at the observation scale should allow us to reconstruct the observed flow and to provide efficient real flows (experimental or natural) based dynamical modeling. Our final goal will be to go towards a 3D reconstruction of real flows, or to operate large motion scales simulations that fit real world flow data and incorporate an appropriate uncertainty modeling.
-
Control and optimization of turbulent flows
We are interested on active control and more precisely on closed-loop control. The main idea is to extract reliable image features to act on the flow. This approach is well known in the robot control community, it is called visual servoing. More generally, it is a technique to control a dynamic system from image features. We plan to apply this approach on flows involved in various domains such as environment, transport, microfluidic, industrial chemistry, pharmacy, food industry, agriculture, etc.
-
Numerical models for geophysical flows simulation and analysis Numerical models are very useful for environmental applications. Several difficulties must be handled simultaneously, in a multidisciplinary context. For example, in geophysics, media are highly heterogeneous and only few data are available. Stochastic models are often necessary to describe unresolved physical processes. Computational domains are characterized by complex 3D geometries, requiring adapted space discretization. Equations modeling flow and transport are transient, requiring also adapted time discretization. Moreover, these equations can be coupled together or with other equations in a global nonlinear system. These large-scale models are very time and memory consuming. High performance computing is thus required to run these types of scientific simulations. Supercomputers and clusters are quite powerful, provided that the numerical models are written with a parallel paradigm.