Bibliography
Major publications by the team in recent years
-
1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.
3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560. -
2S. Delcourte, L. Fézoui, N. Glinsky-Olivier.
A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89. -
3S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Scheid, J. Viquerat.
Recent advances on a DGTD method for time-domain electromagnetics, in: Photonics and Nanostructures - Fundamentals and Applications, 2013, vol. 11, no 4, pp. 291–302. -
4V. Dolean, H. Fahs, F. Loula, S. Lanteri.
Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526. -
5C. Durochat, S. Lanteri, R. Léger.
A non-conforming multi-element DGTD method for the simulation of human exposure to electromagnetic waves, in: Int. J. Numer. Model., Electron. Netw. Devices Fields, 2013, vol. 27, pp. 614-625. -
6C. Durochat, S. Lanteri, C. Scheid.
High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704. -
7M. El Bouajaji, V. Dolean, M. Gander, S. Lanteri.
Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, in: SIAM J. Sci. Comp., 2012, vol. 34, no 4, pp. A20148–A2071. -
8M. El Bouajaji, S. Lanteri.
High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251. -
9V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.
An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, pp. 941–962. -
10H. Fahs.
Development of a -like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216. -
11H. Fahs.
High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300. -
12H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.
Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678. -
13L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176. -
14S. Lanteri, C. Scheid.
Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459. -
15L. Li, S. Lanteri, R. Perrussel.
Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations, in: COMPEL, 2013, pp. 1112–1138. -
16L. Li, S. Lanteri, R. Perrussel.
A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581. -
17R. Léger, J. Viquerat, C. Durochat, C. Scheid, S. Lanteri.
A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, in: J. Comp. Appl. Math., 2014, vol. 270, pp. 330–342. -
18L. Moya, S. Descombes, S. Lanteri.
Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218. -
19L. Moya.
Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246. -
20F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.
A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334. -
21J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.
Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.
http://hal.inria.fr/hal-00819758
Articles in International Peer-Reviewed Journals
-
22D. Chiron, C. Scheid.
Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two, in: Journal of Nonlinear Science, February 2016. [ DOI : 10.1007/s00332-015-9273-6 ]
https://hal.archives-ouvertes.fr/hal-00873794 -
23S. Descombes, S. Lanteri, L. Moya.
Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues, in: SIAM Journal on Scientific Computing, 2016, vol. 38, no 5, pp. A2611-A2633. [ DOI : 10.1137/15M1010282 ]
https://hal.inria.fr/hal-01133694 -
24Y.-X. He, L. Li, S. Lanteri, T.-Z. Huang.
Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a Hybridizable Discontinuous Galerkin method, in: Computer Physics Communications, March 2016. [ DOI : 10.1016/j.cpc.2015.11.011 ]
https://hal.inria.fr/hal-01258441 -
25N. Schmitt, C. Scheid, S. Lanteri, A. Moreau, J. Viquerat.
A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects, in: Journal of Computational Physics, July 2016, vol. 316. [ DOI : 10.1016/j.jcp.2016.04.020 ]
https://hal.archives-ouvertes.fr/hal-01334396 -
26J. Viquerat, S. Lanteri.
Simulation of near-field plasmonic interactions with a local approximation order discontinuous Galerkin time-domain method, in: Photonics and Nanostructures - Fundamentals and Applications, 2016, vol. 18, pp. 43 - 58. [ DOI : 10.1016/j.photonics.2015.12.004 ]
https://hal.archives-ouvertes.fr/hal-01389163
International Conferences with Proceedings
-
27M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Resolution strategy for the Hybridizable Discontinuous Galerkin system for solving Helmholtz elastic wave equations, in: Face to face meeting HPC4E Brazilian-European project, Gramado, Brazil, September 2016.
https://hal.inria.fr/hal-01400643 -
28S. Lanteri, C. Scheid, N. Schmitt, J. Viquerat.
Discontinuous Galerkin Time Domain Methods for Nonlocal Dispersion Models and Electron Beam Modeling in the Context of Nanoplasmonics, in: META 2016 - 7th International Conference on Metamaterials, Photonic Crystals and Plasmonics, Malaga, Spain, Meta 2016 Program, July 2016.
https://hal.inria.fr/hal-01391566 -
29K. Li, T.-Z. Huang, L. Li, S. Lanteri.
Model order reduction based solver for discontinuous Galerkin element approximation of time-domain Maxwell’s equations in dispersive media, in: IMACS2016 - 20th IMACS WORLD CONGRESS, Xiamen, China, December 2016.
https://hal.inria.fr/hal-01416919
Conferences without Proceedings
-
30E. Agullo, M. Kuhn, S. Lanteri, L. Moya.
High order scalable HDG method fro frequency-domain electromagnetics, in: Icosahom 2016 - International Conference on Spectral and High Order Methods, Rio de Janeiro, Brazil, June 2016.
https://hal.inria.fr/hal-01404669 -
31M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Comparison of solvers performance when solving the 3D Helmholtz elastic wave equations over the Hybridizable Discontinuous Galerkin method, in: MATHIAS – TOTAL Symposium on Mathematics, Paris, France, October 2016.
https://hal.inria.fr/hal-01400663 -
32M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Comparison of solvers performance when solving the 3D Helmholtz elastic wave equations using the Hybridizable Discontinuous Galerkin method, in: Workshop DIP - Depth Imaging Partnership, Houston, United States, October 2016.
https://hal.inria.fr/hal-01400656 -
33S. Lanteri, R. Léger, D. Paredes, C. Scheid, F. Valentin.
A multiscale hybrid-mixed method for the Maxwell equations in the time domain, in: WONAPDE 2016, Concepción, Chile, Universidad de Concepción, Chile, January 2016.
https://hal.inria.fr/hal-01245904 -
34S. Lanteri, R. Léger, D. Paredes, C. Scheid, F. Valentin.
A multiscale hybrid-mixed method for the Maxwell equations in time-domain, in: Icosahom 2016 - International Conference on Spectral and High Order Methods, Rio de Janeiro, Brazil, June 2016.
https://hal.inria.fr/hal-01404684 -
35S. Lanteri, C. Scheid, J. Viquerat.
High order DGTD solver for the numerical modeling of nanoscale light/matter interaction, in: Icosahom 2016 - International Conference on Spectral and High Order Methods, Rio de Janeiro, Brazil, June 2016.
https://hal.inria.fr/hal-01404672 -
36N. Schmitt, C. Scheid, S. Lanteri.
Discontinuous Galerkin Time Domain Methods for Nonlocal Dispersion Models and Electron Beam Modeling in the Context of Nanoplasmonics, in: KWT 2016, Riezlern, Austria, September 2016.
https://hal.inria.fr/hal-01391569 -
37N. Schmitt, C. Scheid, S. Lanteri.
Numerical modeling of electron beam interactions with metallic nanostructures using high order time domain solvers, in: School of Plasmonics 2016, Cortona, Italy, July 2016.
https://hal.inria.fr/hal-01391575
Books or Proceedings Editing
-
38R. Léger, D. Alvarez Mallon, A. Duran, S. Lanteri (editors)
Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform, Advances in parallel computing, IOS Press, Edinburgh, United Kingdom, 2016, vol. Parallel Computing: On the Road to Exascale, no 27, 850 p. [ DOI : 10.3233/978-1-61499-621-7-349 ]
https://hal.inria.fr/hal-01243708
Other Publications
-
39A. Christophe-Argenvillier, S. Descombes, S. Lanteri.
An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations, September 2016, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01374521 -
40S. Lanteri, D. Paredes, C. Scheid, F. Valentin.
The multiscale hybrid-mixed method for the maxwell equations in heterogeneous media, November 2016, working paper or preprint.
https://hal.inria.fr/hal-01393011
-
41B. Cockburn, G. Karniadakis, C. Shu (editors)
Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11. -
42B. Cockburn, C. Shu (editors)
Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23. -
43C. Dawson (editor)
Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195. -
44K. Aki, P. Richards.
Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002. -
45K. Busch, M. König, J. Niegemann.
Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37. -
46B. Cockburn, J. Gopalakrishnan, R. Lazarov.
Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365. -
47A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.
Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496. -
48J. S. Hesthaven, T. Warburton.
Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007. -
49J. Jackson.
Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998. -
50X. Ji, W. Cai, P. Zhang.
High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325. -
51J. Niegemann, M. König, K. Stannigel, K. Busch.
Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11. -
52A. Taflove, S. Hagness.
Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005. -
53J. Virieux.
P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901. -
54K. Yee.
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307. -
55Y. Zheng, B. Kiraly, P. Weiss, T. Huang.
Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.