EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.
  • 2S. Delcourte, L. Fézoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.
  • 3S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Scheid, J. Viquerat.

    Recent advances on a DGTD method for time-domain electromagnetics, in: Photonics and Nanostructures - Fundamentals and Applications, 2013, vol. 11, no 4, pp. 291–302.
  • 4V. Dolean, H. Fahs, F. Loula, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.
  • 5C. Durochat, S. Lanteri, R. Léger.

    A non-conforming multi-element DGTD method for the simulation of human exposure to electromagnetic waves, in: Int. J. Numer. Model., Electron. Netw. Devices Fields, 2013, vol. 27, pp. 614-625.
  • 6C. Durochat, S. Lanteri, C. Scheid.

    High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704.
  • 7M. El Bouajaji, V. Dolean, M. Gander, S. Lanteri.

    Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, in: SIAM J. Sci. Comp., 2012, vol. 34, no 4, pp. A20148–A2071.
  • 8M. El Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251.
  • 9V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.

    An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, pp. 941–962.
  • 10H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
  • 11H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
  • 12H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.
  • 13L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.
  • 14S. Lanteri, C. Scheid.

    Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459.
  • 15L. Li, S. Lanteri, R. Perrussel.

    Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations, in: COMPEL, 2013, pp. 1112–1138.
  • 16L. Li, S. Lanteri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581.
  • 17R. Léger, J. Viquerat, C. Durochat, C. Scheid, S. Lanteri.

    A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, in: J. Comp. Appl. Math., 2014, vol. 270, pp. 330–342.
  • 18L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218.
  • 19L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246.
  • 20F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.

    A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334.
  • 21J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.

    Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.

    http://hal.inria.fr/hal-00819758
Publications of the year

Articles in International Peer-Reviewed Journals

  • 22D. Chiron, C. Scheid.

    Travelling Waves for the Nonlinear Schrödinger Equation with General Nonlinearity in Dimension Two, in: Journal of Nonlinear Science, February 2016. [ DOI : 10.1007/s00332-015-9273-6 ]

    https://hal.archives-ouvertes.fr/hal-00873794
  • 23S. Descombes, S. Lanteri, L. Moya.

    Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues, in: SIAM Journal on Scientific Computing, 2016, vol. 38, no 5, pp. A2611-A2633. [ DOI : 10.1137/15M1010282 ]

    https://hal.inria.fr/hal-01133694
  • 24Y.-X. He, L. Li, S. Lanteri, T.-Z. Huang.

    Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a Hybridizable Discontinuous Galerkin method, in: Computer Physics Communications, March 2016. [ DOI : 10.1016/j.cpc.2015.11.011 ]

    https://hal.inria.fr/hal-01258441
  • 25N. Schmitt, C. Scheid, S. Lanteri, A. Moreau, J. Viquerat.

    A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects, in: Journal of Computational Physics, July 2016, vol. 316. [ DOI : 10.1016/j.jcp.2016.04.020 ]

    https://hal.archives-ouvertes.fr/hal-01334396
  • 26J. Viquerat, S. Lanteri.

    Simulation of near-field plasmonic interactions with a local approximation order discontinuous Galerkin time-domain method, in: Photonics and Nanostructures - Fundamentals and Applications, 2016, vol. 18, pp. 43 - 58. [ DOI : 10.1016/j.photonics.2015.12.004 ]

    https://hal.archives-ouvertes.fr/hal-01389163

International Conferences with Proceedings

  • 27M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Resolution strategy for the Hybridizable Discontinuous Galerkin system for solving Helmholtz elastic wave equations, in: Face to face meeting HPC4E Brazilian-European project, Gramado, Brazil, September 2016.

    https://hal.inria.fr/hal-01400643
  • 28S. Lanteri, C. Scheid, N. Schmitt, J. Viquerat.

    Discontinuous Galerkin Time Domain Methods for Nonlocal Dispersion Models and Electron Beam Modeling in the Context of Nanoplasmonics, in: META 2016 - 7th International Conference on Metamaterials, Photonic Crystals and Plasmonics, Malaga, Spain, Meta 2016 Program, July 2016.

    https://hal.inria.fr/hal-01391566
  • 29K. Li, T.-Z. Huang, L. Li, S. Lanteri.

    Model order reduction based solver for discontinuous Galerkin element approximation of time-domain Maxwell’s equations in dispersive media, in: IMACS2016 - 20th IMACS WORLD CONGRESS, Xiamen, China, December 2016.

    https://hal.inria.fr/hal-01416919

Conferences without Proceedings

  • 30E. Agullo, M. Kuhn, S. Lanteri, L. Moya.

    High order scalable HDG method fro frequency-domain electromagnetics, in: Icosahom 2016 - International Conference on Spectral and High Order Methods, Rio de Janeiro, Brazil, June 2016.

    https://hal.inria.fr/hal-01404669
  • 31M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Comparison of solvers performance when solving the 3D Helmholtz elastic wave equations over the Hybridizable Discontinuous Galerkin method, in: MATHIAS – TOTAL Symposium on Mathematics, Paris, France, October 2016.

    https://hal.inria.fr/hal-01400663
  • 32M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Comparison of solvers performance when solving the 3D Helmholtz elastic wave equations using the Hybridizable Discontinuous Galerkin method, in: Workshop DIP - Depth Imaging Partnership, Houston, United States, October 2016.

    https://hal.inria.fr/hal-01400656
  • 33S. Lanteri, R. Léger, D. Paredes, C. Scheid, F. Valentin.

    A multiscale hybrid-mixed method for the Maxwell equations in the time domain, in: WONAPDE 2016, Concepción, Chile, Universidad de Concepción, Chile, January 2016.

    https://hal.inria.fr/hal-01245904
  • 34S. Lanteri, R. Léger, D. Paredes, C. Scheid, F. Valentin.

    A multiscale hybrid-mixed method for the Maxwell equations in time-domain, in: Icosahom 2016 - International Conference on Spectral and High Order Methods, Rio de Janeiro, Brazil, June 2016.

    https://hal.inria.fr/hal-01404684
  • 35S. Lanteri, C. Scheid, J. Viquerat.

    High order DGTD solver for the numerical modeling of nanoscale light/matter interaction, in: Icosahom 2016 - International Conference on Spectral and High Order Methods, Rio de Janeiro, Brazil, June 2016.

    https://hal.inria.fr/hal-01404672
  • 36N. Schmitt, C. Scheid, S. Lanteri.

    Discontinuous Galerkin Time Domain Methods for Nonlocal Dispersion Models and Electron Beam Modeling in the Context of Nanoplasmonics, in: KWT 2016, Riezlern, Austria, September 2016.

    https://hal.inria.fr/hal-01391569
  • 37N. Schmitt, C. Scheid, S. Lanteri.

    Numerical modeling of electron beam interactions with metallic nanostructures using high order time domain solvers, in: School of Plasmonics 2016, Cortona, Italy, July 2016.

    https://hal.inria.fr/hal-01391575

Books or Proceedings Editing

  • 38R. Léger, D. Alvarez Mallon, A. Duran, S. Lanteri (editors)

    Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform, Advances in parallel computing, IOS Press, Edinburgh, United Kingdom, 2016, vol. Parallel Computing: On the Road to Exascale, no 27, 850 p. [ DOI : 10.3233/978-1-61499-621-7-349 ]

    https://hal.inria.fr/hal-01243708

Other Publications

  • 39A. Christophe-Argenvillier, S. Descombes, S. Lanteri.

    An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations, September 2016, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01374521
  • 40S. Lanteri, D. Paredes, C. Scheid, F. Valentin.

    The multiscale hybrid-mixed method for the maxwell equations in heterogeneous media, November 2016, working paper or preprint.

    https://hal.inria.fr/hal-01393011
References in notes
  • 41B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 42B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 43C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 44K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 45K. Busch, M. König, J. Niegemann.

    Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
  • 46B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
  • 47A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.

    Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
  • 48J. S. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 49J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 50X. Ji, W. Cai, P. Zhang.

    High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
  • 51J. Niegemann, M. König, K. Stannigel, K. Busch.

    Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
  • 52A. Taflove, S. Hagness.

    Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
  • 53J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
  • 54K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
  • 55Y. Zheng, B. Kiraly, P. Weiss, T. Huang.

    Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.