Publications of the year

Articles in International Peer-Reviewed Journals

  • 1F. Bona, N. Gast, J.-Y. Le Boudec, P. Pinson, D.-C. Tomozei.

    Attribution mechanisms for ancillary service costs induced by variability in power delivery, in: IEEE Transactions on Power Systems, 2016, 10 p. [ DOI : 10.1109/TPWRS.2016.2598760 ]

  • 2M. Bravo, P. Mertikopoulos.

    On the robustness of learning in games with stochastically perturbed payoff observations, in: Games and Economic Behavior, June 2016.

  • 3N. Gast, B. Van Houdt.

    Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms, in: Queueing Systems, June 2016, This paper is an extended version of the ACM SIGMETRICS 2015 paper that is accessible at https://hal.inria.fr/hal-01143838. [ DOI : 10.1007/s11134-016-9487-9 ]

  • 4B. Gaujal, P. Mertikopoulos.

    A stochastic approximation algorithm for stochastic semidefinite programming, in: Probability in the Engineering and Informational Sciences, 2016, vol. 30, no 3, pp. 431-454.

  • 5J.-P. Gayon, G. Massonnet, C. Rapine, G. Stauffer.

    Constant approximation algorithms for the one warehouse multiple retailers problem with backlog or lost-sales, in: European Journal of Operational Research, April 2016, vol. 250, no 1, pp. 155 - 163. [ DOI : 10.1016/j.ejor.2015.10.054 ]

  • 6S. Gupta, E. V. Belmega, M. Á. Vázquez-Castro.

    Game theoretical analysis of rate adaptation protocols conciliating QoS and QoE, in: EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN), 2016, vol. 2016, 75 p. [ DOI : 10.1186/s13638-016-0569-5 ]

  • 7R. Masmoudi, E. Veronica Belmega, I. Fijalkow.

    Efficient spectrum scheduling and power management for opportunistic users, in: EURASIP Journal on Wireless Communications and Networking, April 2016. [ DOI : 10.1186/s13638-016-0594-4 ]

  • 8P. Mertikopoulos, E. V. Belmega.

    Learning to be green: Robust energy efficiency maximization in dynamic MIMO-OFDM systems, in: IEEE Journal on Selected Areas in Communications, April 2016, vol. 34, no 4, pp. 743 - 757.

  • 9P. Mertikopoulos, A. L. Moustakas.

    Learning in an uncertain world: MIMO covariance matrix optimization with imperfect feedback, in: IEEE Transactions on Signal Processing, January 2016, vol. 64, no 1, pp. 5-18.

  • 10P. Mertikopoulos, W. H. Sandholm.

    Learning in games via reinforcement and regularization, in: Mathematics of Operations Research, November 2016, vol. 41, no 4, pp. 1297-1324.

  • 11P. Mertikopoulos, W. H. Sandholm.

    Learning in games via reinforcement learning and regularization, in: Mathematics of Operations Research, November 2016, 34 pages, 6 figures. [ DOI : 10.1287/moor.2016.0778 ]

  • 12P. Mertikopoulos, Y. Viossat.

    Imitation dynamics with payoff shocks, in: International Journal of Game Theory, March 2016, vol. 45, no 1-2, pp. 291-320.

  • 13A. L. Moustakas, P. Mertikopoulos, N. Bambos.

    Power Optimization in Random Wireless Networks, in: IEEE Transactions on Information Theory, September 2016, vol. 62, no 9, pp. 5030-5058.

  • 14S. Perkins, P. Mertikopoulos, D. S. Leslie.

    Mixed-strategy learning with continuous action sets, in: IEEE Transactions on Automatic Control, 2016.


Invited Conferences

  • 15A. Marcastel, E. V. Belmega, P. Mertikopoulos, I. Fijalkow.

    Interference Mitigation via Pricing in Time-Varying Cognitive Radio Systems, in: International conference on NETwork Games, COntrol and OPtimization, Avignon, France, November 2016.


International Conferences with Proceedings

  • 16L. Bortolussi, N. Gast.

    Mean Field Approximation of Uncertain Stochastic Models, in: 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2016), Toulouse, France, June 2016.

  • 17J. Doncel, N. Gast, B. Gaujal.

    Are mean-field games the limits of finite stochastic games?, in: The 18th Workshop on MAthematical performance Modeling and Analysis, Nice, France, June 2016.

  • 18S. Durand, B. Gaujal.

    Complexity and Optimality of the Best Response Algorithm in Random Potential Games, in: Symposium on Algorithmic Game Theory (SAGT) 2016, Liverpool, United Kingdom, September 2016, pp. 40-51. [ DOI : 10.1007/978-3-662-53354-3_4 ]

  • 19V. Garcia Pinto, L. Stanisic, A. Legrand, L. Mello Schnorr, S. Thibault, V. Danjean.

    Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach, in: 3rd Workshop on Visual Performance Analysis (VPA), Salt Lake City, United States, November 2016, Held in conjunction with SC16.

  • 20N. Gast.

    Construction of Lyapunov functions via relative entropy with application to caching, in: The 18th Workshop on MAthematical performance Modeling and Analysis, Nice, France, June 2016.

  • 21N. Gast, B. Van Houdt.

    Asymptotically Exact TTL-Approximations of the Cache Replacement Algorithms LRU(m) and h-LRU, in: 28th International Teletraffic Congress (ITC 28), Würzburg, Germany, September 2016.

  • 22C. Grasland, R. Lamarche-Perrin, M. Le Texier, H. Pecout, S. De Ruffray, A. Studeny, J.-M. Vincent.

    Territoire, territorialité et territorialisation des événements médiatiques, in: CIST2016 - En quête de territoire(s) ?, Grenoble, France, Collège international des sciences du territoire (CIST), March 2016, pp. 207-213.

  • 23P. Mertikopoulos, E. V. Belmega, L. Sanguinetti.

    Distributed learning for resource allocation under uncertainty, in: GLOBALSIP '16: Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing, 2016.

  • 24A. S. Shafigh, P. Mertikopoulos, S. Glisic.

    A novel dynamic network architecture model based on stochastic geometry and game theory, in: ICC '16: Proceedings of the 2016 IEEE International Conference on Communications, 2016.


Conferences without Proceedings

  • 25S. Durand, B. Gaujal.

    Average complexity of the Best Response Algorithm in Potential Games , in: Atelier Evalution de Performance 2016, Toulouse, France, March 2016.

  • 26S. Durand, B. Gaujal.

    Average complexity of the Best Response Algorithm in Potential Games, in: 17ème conférence dela Société française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF 2016), Compiegne, France, February 2016.

  • 27A. Marcastel, E. Veronica Belmega, P. Mertikopoulos, I. Fijalkow.

    Online Interference Mitigation via Learning in Dynamic IoT Environments, in: IEEE WORKSHOP GLOBECOM 2016, Washington, DC, United States, December 2016.

  • 28A. Marcastel, E. Veronica Belmega, P. Mertikopoulos, I. Fijalkow.

    Online Power Allocation for Opportunistic Radio Access in Dynamic OFDM Networks, in: 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall), Montreal, Canada, September 2016.


Scientific Books (or Scientific Book chapters)

  • 29L. Bortolussi, N. Gast.

    Mean-Field Limits Beyond Ordinary Differential Equations, in: Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems, M. Bernardo, R. De Nicola, J. Hillston (editors), June 2016, vol. Programming and Software Engineering, 16th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2016, Bertinoro, Italy, June 20-24, 2016, Advanced Lectures. [ DOI : 10.1007/978-3-319-34096-8_3 ]


Internal Reports

  • 30D. Beniamine, G. Huard.

    Moca: An efficient Memory trace collection system, Inria Grenoble Rhône-Alpes, Université de Grenoble, July 2016, no RR-8931, 16 p.

  • 31S. Durand, B. Gaujal.

    Complexity and Optimality of the Best Response Algorithm in Random Potential Games, Inria - Research Centre Grenoble – Rhône-Alpes ; Grenoble 1 UGA - Université Grenoble Alpe, June 2016, no RR-8925, 30 p.

  • 32B. Jonglez, B. Gaujal.

    Distributed Adaptive Routing in Communication Networks, Inria ; Univ. Grenoble Alpes, October 2016, no RR-8959, 25 p.

  • 33A. Martin, V. Marangozova-Martin.

    Automatic Benchmark Profiling through Advanced Trace Analysis, Inria - Research Centre Grenoble – Rhône-Alpes ; Université Grenoble Alpes ; CNRS, March 2016, no RR-8889.


Other Publications

References in notes
  • 45R. M. Badia, J. Labarta, J. Giménez, F. Escalé.

    Dimemas: Predicting MPI Applications Behaviour in Grid Environments, in: Proc. of the Workshop on Grid Applications and Programming Tools, June 2003.
  • 46C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen.

    Model-checking algorithms for continuous-time Markov chains, in: Software Engineering, IEEE Transactions on, 2003, vol. 29, no 6.

  • 47A. Basu, S. Fleming, J. Stanier, S. Naicken, I. Wakeman, V. K. Gurbani.

    The State of Peer-to-peer Network Simulators, in: ACM Computing Survey, August 2013, vol. 45, no 4.
  • 48D. Becker, F. Wolf, W. Frings, M. Geimer, B. Wylie, B. Mohr.

    Automatic Trace-Based Performance Analysis of Metacomputing Applications, in: Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, March 2007.

  • 49P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis, M. Quinson, M. L. Stillwell, F. Suter, B. Videau.

    Toward Better Simulation of MPI Applications on Ethernet/TCP Networks, in: PMBS13 - 4th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems, Denver, United States, November 2013.

  • 50G. Bianchi.

    Performance analysis of the IEEE 802.11 distributed coordination function, in: Selected Areas in Communications, IEEE Journal on, 2000, vol. 18, no 3.
  • 51L. Bobelin, A. Legrand, M. A. G. David, P. Navarro, M. Quinson, F. Suter, C. Thiery.

    Scalable Multi-Purpose Network Representation for Large Scale Distributed System Simulation, in: CCGrid 2012 – The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Ottawa, Canada, May 2012, 19 p.

  • 52L. Bortolussi, J. Hillston.

    Model checking single agent behaviours by fluid approximation, in: Information and Computation, 2015, vol. 242.

  • 53L. Bortolussi, R. Lanciani.

    Model Checking Markov Population Models by Central Limit Approximation, in: Quantitative Evaluation of Systems, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013, no 8054.
  • 54L. Bortolussi, R. Lanciani.

    Fluid Model Checking of Timed Properties, in: Formal Modeling and Analysis of Timed Systems, Springer International Publishing, 2015.
  • 55H. Brunst, D. Hackenberg, G. Juckeland, H. Rohling.

    Comprehensive Performance Tracking with Vampir 7, in: Tools for High Performance Computing 2009, M. S. Müller, M. M. Resch, A. Schulz, W. E. Nagel (editors), Springer Berlin Heidelberg, 2010.

  • 56A. Busic, B. Gaujal, G. Gorgo, J.-M. Vincent.

    PSI2 : Envelope Perfect Sampling of Non Monotone Systems, in: QEST 2010 - International Conference on Quantitative Evaluation of Systems, Williamsburg, VA, United States, IEEE, September 2010, pp. 83-84.

  • 57A. Busic, B. Gaujal, F. Perronnin.

    Perfect Sampling of Networks with Finite and Infinite Capacity Queues, in: 19th International Conference on Analytical and Stochastic Modelling Techniques and Applications (ASMTA) 2012, Grenoble, France, K. Al-Begain, D. Fiems, J.-M. Vincent (editors), Lecture Notes in Computer Science, Springer, 2012, vol. 7314, pp. 136-149. [ DOI : 10.1007/978-3-642-30782-9_10 ]

  • 58S. Böhm, C. Engelmann.

    xSim: The Extreme-Scale Simulator, in: Proceedings of the International Conference on High Performance Computing and Simulation (HPCS) 2011, Istanbul, Turkey, IEEE Computer Society, Los Alamitos, CA, USA, July 2011.
  • 59H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter.

    Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms, in: Journal of Parallel and Distributed Computing, June 2014, vol. 74, no 10, pp. 2899-2917. [ DOI : 10.1016/j.jpdc.2014.06.008 ]

  • 60A. Chaintreau, J.-Y. Le Boudec, N. Ristanovic.

    The Age of Gossip: Spatial Mean Field Regime, in: SIGMETRICS Perform. Eval. Rev., June 2009, vol. 37, no 1.

  • 61K. Coulomb, M. Faverge, J. Jazeix, O. Lagrasse, J. Marcoueille, P. Noisette, A. Redondy, C. Vuchener.

    Visual trace explorer (ViTE), October, 2009.
  • 62J. Doncel, N. Gast, B. Gaujal.

    Mean-Field Games with Explicit Interactions, February 2016.

  • 63S. Durand, B. Gaujal, F. Perronnin, J.-M. Vincent.

    A perfect sampling algorithm of random walks with forbidden arcs, in: QEST 2014 - 11th International Conference on Quantitative Evaluation of Systems, Florence, Italy, Springer, September 2014, vol. 8657, pp. 178-193. [ DOI : 10.1007/978-3-319-10696-0_15 ]

  • 64C. Fricker, N. Gast.

    Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity, in: EURO Journal on Transportation and Logistics, June 2014, 31 p. [ DOI : 10.1007/s13676-014-0053-5 ]

  • 65C. Fricker, N. Gast, H. Mohamed.

    Mean field analysis for inhomogeneous bike sharing systems, in: AofA, Montreal, Canada, July 2012.

  • 66D. Fudenberg, D. K. Levine.

    The Theory of Learning in Games, Economic learning and social evolution, MIT Press, Cambridge, MA, 1998, vol. 2.
  • 67R. M. Fujimoto.

    Parallel Discrete Event Simulation, in: Commun. ACM, October 1990, vol. 33, no 10.

  • 68N. Gast, B. Gaujal.

    Markov chains with discontinuous drifts have differential inclusion limits, in: Performance Evaluation, 2012, vol. 69, no 12, pp. 623-642. [ DOI : 10.1016/j.peva.2012.07.003 ]

  • 69N. Gast, B. Gaujal, J.-Y. Le Boudec.

    Mean field for Markov Decision Processes: from Discrete to Continuous Optimization, in: IEEE Transactions on Automatic Control, 2012, vol. 57, no 9, pp. 2266 - 2280. [ DOI : 10.1109/TAC.2012.2186176 ]

  • 70N. Gast, J.-Y. Le Boudec, D.-C. Tomozei.

    Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity Markets, in: ACM e-Energy 2014, Cambridge, United Kingdom, June 2014. [ DOI : 10.1145/2602044.2602052 ]

  • 71N. Gast, B. Van Houdt.

    Transient and Steady-state Regime of a Family of List-based Cache Replacement Algorithms, in: ACM SIGMETRICS 2015, Portland, United States, June 2015. [ DOI : 10.1145/2745844.2745850 ]

  • 72D. A. Gomes, J. Mohr, R. R. Souza.

    Discrete time, finite state space mean field games, in: Journal de Mathématiques Pures et Appliquées, 2010, vol. 93, no 3, pp. 308–328.
  • 73J. Gonzalez, J. Gimenez, J. Labarta.

    Automatic detection of parallel applications computation phases, in: Parallel and Distributed Processing Symposium, International, 2009, vol. 0.

  • 74M. Heath, J. Etheridge.

    Visualizing the performance of parallel programs, in: IEEE software, 1991, vol. 8, no 5.
  • 75T. Hoefler, T. Schneider, A. Lumsdaine.

    LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model, in: Proc. of the ACM Workshop on Large-Scale System and Application Performance, June 2010.
  • 76L. Hu, J.-Y. Le Boudec, M. Vojnović.

    Optimal channel choice for collaborative ad-hoc dissemination, in: INFOCOM, 2010 Proceedings IEEE, IEEE, 2010.
  • 77L. V. Kalé, G. Zheng, C. W. Lee, S. Kumar.

    Scaling applications to massively parallel machines using Projections performance analysis tool, in: Future Generation Comp. Syst., 2006, vol. 22, no 3.
  • 78T. G. Kurtz.

    Approximation of population processes, SIAM, 1981, vol. 36.
  • 79J.-M. Lasry, P.-L. Lions.

    Mean field games, in: Japanese Journal of Mathematics, 2007, vol. 2, no 1.
  • 80Y.-B. Lin, E. D. Lazowska.

    A Time-division Algorithm for Parallel Simulation, in: ACM Trans. Model. Comput. Simul., January 1991, vol. 1, no 1.

  • 81G. Llort, J. González, H. Servat, J. Giménez, J. Labarta.

    On-line Detection of Large-scale Parallel Application's Structure, in: 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS’2010), 2010.
  • 82L. Mello Schnorr, A. Legrand.

    Visualizing More Performance Data Than What Fits on Your Screen, in: Tools for High Performance Computing 2012, A. Cheptsov, S. Brinkmann, J. Gracia, M. M. Resch, W. E. Nagel (editors), Springer Berlin Heidelberg, 2013, pp. 149-162. [ DOI : 10.1007/978-3-642-37349-7_10 ]

  • 83S. Meyn, P. Barooah, A. Busic, J. Ehren.

    Ancillary service to the grid from deferrable loads: the case for intelligent pool pumps in Florida, in: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, IEEE, 2013.
  • 84M. Mitzenmacher.

    The power of two choices in randomized load balancing, in: Parallel and Distributed Systems, IEEE Transactions on, 2001, vol. 12, no 10.
  • 85K. Mohror, K. Karavanic, A. Snavely.

    Scalable Event Trace Visualization, in: Euro-Par 2009 – Parallel Processing Workshops, H.-X. Lin, M. Alexander, M. Forsell, A. Knüpfer, R. Prodan, L. Sousa, A. Streit (editors), Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010, vol. 6043.

  • 86W. Nagel, A. Arnold, M. Weber, H. Hoppe, K. Solchenbach.

    VAMPIR: Visualization and Analysis of MPI Resources, in: Supercomputer, 1996, vol. 12, no 1.
  • 87V. Pillet, J. Labarta, T. Cortes, S. Girona.

    PARAVER: A tool to visualise and analyze parallel code, in: Proceedings of Transputer and occam Developments, WOTUG-18, Transputer and Occam Engineering, IOS Press, 1995, vol. 44.
  • 88J. Propp, D. Wilson.

    Coupling from the past: a user's guide, in: DIMACS Series on Discrete Mathematics and Theoretical Computer Science, 1998, vol. 41, Microsurveys in discrete probability.
  • 89M. L. Puterman.

    Markov decision processes: discrete stochastic dynamic programming, John Wiley & Sons, 2014.
  • 90D. Reed, P. Roth, R. Aydt, K. Shields, L. Tavera, R. Noe, B. Schwartz.

    Scalable performance analysis: the Pablo performance analysis environment, in: Scalable Parallel Libraries Conference, 1993., Proceedings of the, 1993.
  • 91W. H. Sandholm.

    Population Games and Evolutionary Dynamics, Economic learning and social evolution, MIT Press, Cambridge, MA, 2010.
  • 92W. H. Sandholm, M. Staudigl.

    A Sample Path Large Deviation Principle for a Class of Population Processes, in: arXiv preprint arXiv:1511.07897, 2015.
  • 93H. Servat, G. Llort, J. Giménez, K. Huck, J. Labarta.

    Folding: detailed analysis with coarse sampling, in: Tools for High Performance Computing 2011, Springer Berlin Heidelberg, 2012.
  • 94H. Servat, G. Llort, J. Gonzalez, J. Gimenez, J. Labarta.

    Identifying code phases using piece-wise linear regressions, in: Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, IEEE, 2014.
  • 95B. Shneiderman.

    The eyes have it: A task by data type taxonomy for information visualizations, in: Visual Languages, 1996. Proceedings., IEEE Symposium on, IEEE, 1996.
  • 96H. Tembine, J.-Y. L. Boudec, R. El-Azouzi, E. Altman.

    Mean field asymptotics of Markov decision evolutionary games and teams, in: GameNets, 2009, pp. 140–150.
  • 97M. Tikir, M. Laurenzano, L. Carrington, A. Snavely.

    PSINS: An Open Source Event Tracer and Execution Simulator for MPI Applications, in: Proc. of the 15th International Euro-Par Conference on Parallel Processing, LNCS, Springer, August 2009, no 5704.
  • 98B. Van Houdt.

    A Mean Field Model for a Class of Garbage Collection Algorithms in Flash-based Solid State Drives, in: Proceedings of the ACM SIGMETRICS, New York, NY, USA, SIGMETRICS '13, ACM, 2013.

  • 99P. Velho, L. Schnorr, H. Casanova, A. Legrand.

    On the Validity of Flow-level TCP Network Models for Grid and Cloud Simulations, in: ACM Transactions on Modeling and Computer Simulation, October 2013, vol. 23, no 4.

  • 100J. J. Wilke, K. Sargsyan, J. P. Kenny, B. Debusschere, H. N. Najm, G. Hendry.

    Validation and Uncertainty Assessment of Extreme-Scale HPC Simulation through Bayesian Inference, in: Euro-Par 2013 Parallel Processing: 19th International Conference, Aachen, Germany, August 26-30, 2013. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
  • 101F. Wolf, B. Mohr.

    Automatic performance analysis of hybrid MPI/OpenMP applications, in: Journal of Systems Architecture, 2003, vol. 49, no 10-11.
  • 102T. Yang, P. G. Mehta, S. P. Meyn.

    A mean-field control-oriented approach to particle filtering, in: American Control Conference (ACC), 2011, IEEE, 2011.
  • 103L. Ying.

    On the Rate of Convergence of Mean-Field Models: Stein's Method Meets the Perturbation Theory, in: arXiv preprint arXiv:1510.00761, 2015.
  • 104O. Zaki, E. Lusk, W. Gropp, D. Swider.

    Toward Scalable Performance Visualization with Jumpshot, in: International Journal of High Performance Computing Applications, 1999, vol. 13, no 3.

  • 105G. Zheng, G. Kakulapati, L. Kalé.

    BigSim: A Parallel Simulator for Performance Prediction of Extremely Large Parallel Machines, in: Proc. of the 18th International Parallel and Distributed Processing Symposium (IPDPS), April 2004.
  • 106J. C. de Kergommeaux, B. Stein, P. Bernard.

    Paje, an interactive visualization tool for tuning multi-threaded parallel applications, in: Parallel Computing, 2000, vol. 10, no 26, pp. 1253–1274.