Section: Partnerships and Cooperations

National Initiatives


C. Cancès is the coordinator of the ANR GEOPOR project. (https://www.ljll.math.upmc.fr/cances/ANR-GEOPOR/). This project aims to study realistic models for complex porous media flows from a variational point of view, and to take advantage of this new approach to design and analyze some efficient numerical methods.

  • Title: Approche géométrique pour les écoulements en milieux poreux : théorie et numérique.

  • Type: Jeunes Chercheuses Jeunes Chercheurs SIMI 1- 2013

  • ANR Reference: ANR-13-JS01-0007-01

  • Coordinator: Clément Cancès, Inria Lille - Nord Europe.

  • Duration: January 2014 – June 2017

I. Lacroix is the local coordinator at Université Lille 1 of the ANR BECASIM project (http://becasim.math.cnrs.fr/). This ANR project gathers mathematicians with theoretical and numerical backgrounds together with engineers. The objective is to develop numerical methods to accurately simulate the behavior of Bose-Einstein condensates.

  • Title: Simulation numérique avancée pour les condensats de Bose-Einstein.

  • Type: Modèles Numériques - 2012

  • ANR reference: ANR-12-MONU-0007

  • Coordinator: Ionut DANAILA, Université de Rouen.

  • Duration: January 2013 - November 2017.

C. Chainais-Hillairet is a member of the ANR MOONRISE project (http://moonrise.math.cnrs.fr/). The MOONRISE project aims at exploring modeling, mathematical and numerical issues originating from the presence of high oscillations in nonlinear PDEs mainly from the physics of nanotechnologies and from the physics of plasmas.

  • Title: Modèles, Oscillations et schémas numériques.

  • Type: Fondements du numérique (DS0705) - 2014

  • ANR reference: ANR-14-CE23-0007

  • Coordinator: Florian MEHATS, Université de Rennes 1.

  • Duration: October 2014 - September 2019.

B. Merlet is a member of the ANR GEOMETRYA project

(https://www.ljll.math.upmc.fr/lemenant/GEOMETRYA/) The GEOMETRYA project addresses several problems within the framework of geometric measure theory, from both theoretical and numerical viewpoints. Most of these problems are derived from the modeling of physical phenomenons. The main topics are: the Geometric Measure Theory in singular metric spaces, the Plateau problem, the Mumford-Shah functional, irrigation and branched transport problems, the Willmore energy.

  • Title: Théorie gémométrique de la mesure et applications

  • Type: Blanc SIMI 1 - 2012

  • ANR reference: ANR-12-BS01-0014

  • Coordinator: Hervé Pajot, Université Joseph Fourier (Grenoble).

  • Duration: january 2013 - december 2016.


  • Title: Centre Européen pour les Mathématiques, la Physique et leurs interactions

  • Coordinator: Stephan De Bièvre.

  • Duration: January 2012 - December 2019.

  • Partners: Laboratoire Paul Painlevé and Laser physics department (PhLAM), Université Lille 1.

The “Laboratoire d'Excellence” Centre Européen pour les Mathématiques, la Physique et leurs interactions (CEMPI), a project of the Laboratoire de Mathématiques Paul Painlevé and the Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), was created in the context of the "Programme d'Investissements d'Avenir" in February 2012.

The association Painlevé-PhLAM creates in Lille a research unit for fundamental and applied research and for training and technological development that covers a wide spectrum of knowledge stretching from pure and applied mathematics to experimental and applied physics.

One of the three focus areas of CEMPI research is the interface between mathematics and physics. This focus area encompasses three themes. The first is concerned with key problems of a mathematical, physical and technological nature coming from the study of complex behavior in cold atoms physics and non-linear optics, in particular fibre optics. The two other themes deal with fields of mathematics such as algebraic geometry, modular forms, operator algebras, harmonic analysis and quantum groups that have promising interactions with several branches of theoretical physics.