EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1B. Abou El Majd, O. Ouchetto, J.-A. Désidéri, A. Habbal.

    Hessian transfer for multilevel and adaptive shape optimization , in: International Journal for Simulation and Multidisciplinary Design Optimization, 2017, vol. 8, 18 p. [ DOI : 10.1051/smdo/2017002 ]

    https://hal.inria.fr/hal-01440209
  • 2R. Aboulaich, R. Ellaia, S. El Moumen, A. Habbal, N. Moussaid.

    The Mean-CVaR Model for Portfolio Optimization Using a Multi-Objective Approach and the Kalai-Smorodinsky Solution, in: MATEC Web of Conferences, 2017, vol. 105, 4 p. [ DOI : 10.1051/matecconf/201710500010 ]

    https://hal.inria.fr/hal-01575730
  • 3A. Benki, A. Habbal, G. Mathis.

    A metamodel-based multicriteria shape optimization process for an aerosol can, in: Alexandria Engineering Journal, 2017, 12 p. [ DOI : 10.1016/j.aej.2017.03.036 ]

    https://hal.inria.fr/hal-01575721
  • 4F. Berthelin, P. Goatin.

    Particle approximation of a constrained model for traffic flow, in: NoDEA : Nonlinear Differential Equations and Applications, 2017, vol. 24, no 5, pp. 24-55.

    https://hal.archives-ouvertes.fr/hal-01437867
  • 5C. Chalons, P. Goatin B, L. M. Villada.

    High order numerical schemes for one-dimension non-local conservation laws, in: SIAM Journal on Scientific Computing, 2017, https://arxiv.org/abs/1612.05775, forthcoming.

    https://hal.inria.fr/hal-01418749
  • 6C. De Filippis, P. Goatin.

    The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, in: Nonlinear Analysis, 2017, vol. 161, pp. 131-156.

    https://hal.inria.fr/hal-01362504
  • 7M. L. Delle Monache, P. Goatin.

    Stability estimates for scalar conservation laws with moving flux constraints, in: Networks and Heterogeneous Media, June 2017, vol. 12, no 2, pp. 245–258. [ DOI : 10.3934/nhm.2017010 ]

    https://hal.inria.fr/hal-01380368
  • 8M. L. Delle Monache, P. Goatin, B. Piccoli.

    Priority-based Riemann solver for traffic flow on networks , in: Communications in Mathematical Sciences, 2017, forthcoming.

    https://hal.inria.fr/hal-01336823
  • 9C. Durantin, J. Rouxel, J.-A. Desideri, A. Glière.

    Multifidelity surrogate modeling based on Radial Basis Functions, in: Structural and Multidisciplinary Optimization, 2017, vol. 56, no 5, pp. 1061-1075. [ DOI : 10.1007/s00158-017-1703-7 ]

    https://hal.inria.fr/hal-01660796
  • 10P. Goatin, F. Rossi.

    A traffic flow model with non-smooth metric interaction: Well-posedness and micro-macro limit, in: Communications in Mathematical Sciences, 2017, vol. 15, no 1, pp. 261 - 287, https://arxiv.org/abs/1510.04461. [ DOI : 10.4310/CMS.2017.v15.n1.a12 ]

    https://hal.archives-ouvertes.fr/hal-01215944
  • 11O. Kolb, S. Göttlich, P. Goatin.

    Capacity drop and traffic control for a second order traffic model, in: Networks and Heterogeneous Media, 2017, vol. 12, no 4, pp. 663-681.

    https://hal.inria.fr/hal-01402608
  • 12F. Poirion, Q. Mercier, J.-A. Desideri.

    Descent algorithm for nonsmooth stochastic multiobjective optimization, in: Computational Optimization and Applications, 2017, vol. 68, no 2, pp. 317-331. [ DOI : 10.1007/s10589-017-9921-x ]

    https://hal.inria.fr/hal-01660788
  • 13S. Roy, A. Borzì, A. Habbal.

    Pedestrian motion modeled by FP-constrained Nash games, in: Royal Society Open Science, 2017. [ DOI : 10.1098/rsos.170648 ]

    https://hal.inria.fr/hal-01586678
  • 14M. Sacher, F. Hauville, R. Duvigneau, O. Le Maître, N. AUBIN, M. Durand.

    Efficient optimization procedure in non-linear fluid-structure interaction problem: Application to mainsail trimming in upwind conditions, in: Journal of Fluids and Structures, February 2017, vol. 69, pp. 209 - 231. [ DOI : 10.1016/j.jfluidstructs.2016.12.006 ]

    https://hal.inria.fr/hal-01589317
  • 15S. Samaranayake, J. Reilly, W. Krichene, M. L. Delle Monache, P. Goatin, A. Bayen.

    Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks, in: Transportation Science, 2017, forthcoming.

    https://hal.inria.fr/hal-01095707
  • 16S. Villa, P. Goatin, C. Chalons.

    Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, in: Discrete and Continuous Dynamical Systems - Series B, 2017, vol. 22, no 10, pp. 3921-3952.

    https://hal.archives-ouvertes.fr/hal-01347925
  • 17B. Yahyaoui, M. Ayadi, A. Habbal.

    Fisher-KPP with time dependent diffusion is able to model cell-sheet activated and inhibited wound closure, in: Mathematical Biosciences, 2017, vol. 292, pp. 36-45. [ DOI : 10.1016/j.mbs.2017.07.009 ]

    https://hal.inria.fr/hal-01575717

International Conferences with Proceedings

  • 18E. Berrini, B. Mourrain, R. Duvigneau, M. Sacher, Y. Roux.

    Geometric model for automated multi-objective optimization of foils, in: Marine 2017, Nantes, France, VII International Conference on Computational Methods in Marine Engineering, MARINE 2017, May 2017, pp. 473-484.

    https://hal.archives-ouvertes.fr/hal-01524287
  • 19M. Binois, V. Picheny, A. Habbal.

    The Kalai-Smorodinski solution for many-objective Bayesian optimization, in: NIPS 2017 - 31st Conference on Neural Information Processing Systems, Long Beach, United States, December 2017, pp. 1-6.

    https://hal.inria.fr/hal-01656393
  • 20C. Chalons, R. Duvigneau, C. Fiorini.

    Sensitivity analysis for the Euler equations in Lagrangian coordinates, in: FVCA - 8th International Symposium on Finite Volumes for Complex Applications, Lille, France, June 2017.

    https://hal.inria.fr/hal-01589307
  • 21A. Gdhami, R. Duvigneau, M. Moakher.

    Méthode de Galerkin Discontinue : Cas de l'analyse isogéométrique, in: TAM-TAM 2017 - Tendances dans les Applications Mathématiques en Tunisie, Algérie et Maroc, Hammamet, Tunisia, May 2017.

    https://hal.inria.fr/hal-01589293
  • 22V. Picheny, M. Binois, A. Habbal.

    Solving Kalai-Smorodinski Equilibria Using Gaussian Process Regression, in: ENBIS 2017 - 17th Annual Conference of the European Network for Business and Industrial Statistics, Naples, Italy, September 2017.

    https://hal.inria.fr/hal-01656366
  • 23M. Sacher, M. Durand, E. Berrini, F. Hauville, R. Duvigneau, O. Le Maıtre, J. A. ASTOLFI.

    Flexible hydrofoil optimization for the 35th America's cup with constrained Ego Method, in: INNOVSAIL International Conference on Innovation in High Performance Sailing Yachts, Lorient, France, P. Bot (editor), INNOVSAIL 2017, 4th Edition, CVET and Ecole Navale, June 2017, pp. 193-206.

    https://hal.archives-ouvertes.fr/hal-01583591

Conferences without Proceedings

  • 24R. Duvigneau.

    High-Order Taylor Expansions for Compressible Flows, in: SIAM Optimization, Vancouver, Canada, May 2017.

    https://hal.inria.fr/hal-01589254
  • 25R. Duvigneau, A. Gdhami, M. Moakher.

    Isogeometric Analysis for Hyperbolic Conservation Laws using a Discontinuous Galerkin Method, in: International Conference on Isogeometric Analysis, Pavia, Italy, September 2017.

    https://hal.inria.fr/hal-01589270
  • 26C. Fiorini, R. Duvigneau, C. Chalons.

    Sensitivity Analysis for Hyperbolic Systems of Conservation Laws, in: SIAM Optimization, Vancouver, Canada, May 2017.

    https://hal.inria.fr/hal-01589247
  • 27A. Gdhami, R. Duvigneau, M. Moakher.

    Isogeometric analysis for hyperbolic PDEs using a Discontinuous Galerkin method, in: Congrès SMAI, La Tremblade, France, June 2017.

    https://hal.inria.fr/hal-01589278
  • 28M. Sacher, R. Duvigneau, O. Le Maitre, M. Durand, E. Berrini, F. Hauville, J. A. ASTOLFI.

    Surrogates and Classification Approaches for Efficient Global Optimization (EGO) with Inequality Constraints, in: SIAM Optimization, Vancouver, Canada, May 2017.

    https://hal.inria.fr/hal-01589262

Scientific Books (or Scientific Book chapters)

  • 29L. Bociu, J.-A. Désidéri, A. Habbal.

    System Modeling and Optimization: 27th IFIP TC 7 Conference, CSMO 2015, Sophia Antipolis, France, June 29 - July 3, 2015, Revised Selected Papers, IFIP Advances in Information and Communication Technology, Springer International Publishing, 2017, vol. AICT-494. [ DOI : 10.1007/978-3-319-55795-3 ]

    https://hal.inria.fr/hal-01626887
  • 30J.-A. Desideri, R. Duvigneau.

    Parametric optimization of pulsating jets in unsteady flow by Multiple-Gradient Descent Algorithm (MGDA), in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, J. Périaux, W. Fitzgibbon, B. Chetverushkin, O. Pironneau (editors), January 2017.

    https://hal.inria.fr/hal-01414741

Internal Reports

  • 31N. Abettan, R. Duvigneau, A. Habbal.

    Aerodynamic optimization of the cooling duct of a Formula-E vehicle, Inria - Sophia Antipolis, November 2017, no RR-9126.

    https://hal.inria.fr/hal-01645450

Other Publications

  • 32C. Chalons, R. Duvigneau, C. Fiorini.

    Sensitivity analysis and numerical diffusion effects for hyperbolic PDE systems with discontinuous solutions. The case of barotropic Euler equations in Lagrangian coordinates, July 2017, Pre-print submitted to SIAM Scientific Computing..

    https://hal.inria.fr/hal-01589337
  • 33F. A. Chiarello, P. Goatin.

    Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, July 2017, working paper or preprint.

    https://hal.inria.fr/hal-01567575
  • 34R. Duvigneau.

    Isogeometric analysis for compressible flows using a Discontinuous Galerkin method, February 2017, Pre-print submitted to Computer Methods in Applied Mechanics and Engineering.

    https://hal.inria.fr/hal-01589344
  • 35P. Goatin, G. Piacentini, A. Ferrara.

    Traffic control via moving bottleneck of coordinated vehicles, November 2017, working paper or preprint.

    https://hal.inria.fr/hal-01644823
  • 36O. Kolb, G. Costeseque, P. Goatin, S. Göttlich.

    Pareto-optimal coupling conditions for a second order traffic flow model at junctions, June 2017, working paper or preprint.

    https://hal.inria.fr/hal-01551100
  • 37N. LAURENT-BROUTY, A. Keimer, F. Farokhi, H. Signargout, V. Cvetkovic, A. M. Bayen, K. H. Johansson.

    Integration of Information Patterns in the Modeling and Design of Mobility Management Services, December 2017, https://arxiv.org/abs/1707.07371 - 24 pages, 11 Figures.

    https://hal.inria.fr/hal-01656767
  • 38N. Laurent-Brouty, G. Costeseque, P. Goatin.

    A coupled PDE-ODE model for bounded acceleration in macroscopic traffic flow models, November 2017, working paper or preprint.

    https://hal.inria.fr/hal-01636156
  • 39E. Rossi, R. M. Colombo.

    Non Local Conservation Laws in Bounded Domains, November 2017, working paper or preprint.

    https://hal.inria.fr/hal-01634435
References in notes
  • 40R. Abgrall, P. M. Congedo.

    A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems, in: J. Comput. Physics, 2012.
  • 41A. Aggarwal, R. M. Colombo, P. Goatin.

    Nonlocal systems of conservation laws in several space dimensions, in: SIAM Journal on Numerical Analysis, 2015, vol. 52, no 2, pp. 963-983.

    https://hal.inria.fr/hal-01016784
  • 42G. Alessandrini.

    Examples of instability in inverse boundary-value problems, in: Inverse Problems, 1997, vol. 13, no 4, pp. 887–897.

    http://dx.doi.org/10.1088/0266-5611/13/4/001
  • 43L. Almeida, P. Bagnerini, A. Habbal.

    Modeling actin cable contraction, in: Comput. Math. Appl., 2012, vol. 64, no 3, pp. 310–321.

    http://dx.doi.org/10.1016/j.camwa.2012.02.041
  • 44L. Almeida, P. Bagnerini, A. Habbal, S. Noselli, F. Serman.

    A Mathematical Model for Dorsal Closure, in: Journal of Theoretical Biology, January 2011, vol. 268, no 1, pp. 105-119. [ DOI : 10.1016/j.jtbi.2010.09.029 ]

    http://hal.inria.fr/inria-00544350/en
  • 45D. Amadori, W. Shen.

    An integro-differential conservation law arising in a model of granular flow, in: J. Hyperbolic Differ. Equ., 2012, vol. 9, no 1, pp. 105–131.
  • 46P. Amorim.

    On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, in: Bull. Braz. Math. Soc. (N.S.), 2012, vol. 43, no 4, pp. 599–614.
  • 47P. Amorim, R. Colombo, A. Teixeira.

    On the Numerical Integration of Scalar Nonlocal Conservation Laws, in: ESAIM M2AN, 2015, vol. 49, no 1, pp. 19–37.
  • 48M. Annunziato, A. Borzì.

    A Fokker-Planck control framework for multidimensional stochastic processes, in: Journal of Computational and Applied Mathematics, 2013, vol. 237, pp. 487-507.
  • 49A. Belme, F. Alauzet, A. Dervieux.

    Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, in: J. Comput. Physics, 2012, vol. 231, no 19, pp. 6323–6348.
  • 50S. Benzoni-Gavage, R. M. Colombo, P. Gwiazda.

    Measure valued solutions to conservation laws motivated by traffic modelling, in: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2006, vol. 462, no 2070, pp. 1791–1803.
  • 51E. Bertino, R. Duvigneau, P. Goatin.

    Uncertainties in traffic flow and model validation on GPS data, In preparation.
  • 52F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory.

    On nonlocal conservation laws modelling sedimentation, in: Nonlinearity, 2011, vol. 24, no 3, pp. 855–885.
  • 53S. Blandin, P. Goatin.

    Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, in: Numer. Math., 2016, vol. 132, no 2, pp. 217–241.

    https://doi.org/10.1007/s00211-015-0717-6
  • 54J. Borggaard, J. Burns.

    A {PDE} Sensitivity Equation Method for Optimal Aerodynamic Design, in: Journal of Computational Physics, 1997, vol. 136, no 2, pp. 366 - 384. [ DOI : 10.1006/jcph.1997.5743 ]

    http://www.sciencedirect.com/science/article/pii/S0021999197957430
  • 55R. Bourguet, M. Brazza, G. Harran, R. El Akoury.

    Anisotropic Organised Eddy Simulation for the prediction of non-equilibrium turbulent flows around bodies, in: J. of Fluids and Structures, 2008, vol. 24, no 8, pp. 1240–1251.
  • 56A. Bressan, S. Čanić, M. Garavello, M. Herty, B. Piccoli.

    Flows on networks: recent results and perspectives, in: EMS Surv. Math. Sci., 2014, vol. 1, no 1, pp. 47–111.
  • 57M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram.

    Mean field games with nonlinear mobilities in pedestrian dynamics, in: Discrete Contin. Dyn. Syst. Ser. B, 2014, vol. 19, no 5, pp. 1311–1333.
  • 58M. Burger, J. Haskovec, M.-T. Wolfram.

    Individual based and mean-field modelling of direct aggregation, in: Physica D, 2013, vol. 260, pp. 145–158.
  • 59A. Cabassi, P. Goatin.

    Validation of traffic flow models on processed GPS data, 2013, Research Report RR-8382.
  • 60J. A. Carrillo, S. Martin, M.-T. Wolfram.

    A local version of the Hughes model for pedestrian flow, 2015, Preprint.
  • 61C. Chalons, M. L. Delle Monache, P. Goatin.

    A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, 2015, Preprint.
  • 62C. Claudel, A. Bayen.

    Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods, in: Automatic Control, IEEE Transactions on, May 2010, vol. 55, no 5, pp. 1158-1174.
  • 63C. G. Claudel, A. M. Bayen.

    Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, in: SIAM J. Control Optim., 2011, vol. 49, no 2, pp. 383–402.
  • 64R. M. Colombo, M. Garavello, M. Lécureux-Mercier.

    A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, no 04, 1150023 p.
  • 65R. M. Colombo, M. Herty, M. Mercier.

    Control of the continuity equation with a non local flow, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 2, pp. 353–379.
  • 66R. M. Colombo, M. Lécureux-Mercier.

    Nonlocal crowd dynamics models for several populations, in: Acta Math. Sci. Ser. B Engl. Ed., 2012, vol. 32, no 1, pp. 177–196.
  • 67R. M. Colombo, F. Marcellini.

    A mixed ODE–PDE model for vehicular traffic, in: Mathematical Methods in the Applied Sciences, 2015, vol. 38, no 7, pp. 1292–1302.
  • 68R. M. Colombo, E. Rossi.

    On the micro-macro limit in traffic flow, in: Rend. Semin. Mat. Univ. Padova, 2014, vol. 131, pp. 217–235.
  • 69G. Costeseque, J.-P. Lebacque.

    Discussion about traffic junction modelling: conservation laws vs Hamilton-Jacobi equations, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 411–433.
  • 70G. Crippa, M. Lécureux-Mercier.

    Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, in: Nonlinear Differential Equations and Applications NoDEA, 2012, pp. 1-15.
  • 71E. Cristiani, B. Piccoli, A. Tosin.

    How can macroscopic models reveal self-organization in traffic flow?, in: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, Dec 2012, pp. 6989-6994.
  • 72E. Cristiani, B. Piccoli, A. Tosin.

    Multiscale modeling of pedestrian dynamics, MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014, vol. 12, xvi+260 p.
  • 73C. M. Dafermos.

    Solutions in L for a conservation law with memory, in: Analyse mathématique et applications, Montrouge, Gauthier-Villars, 1988, pp. 117–128.
  • 74P. Degond, J.-G. Liu, C. Ringhofer.

    Large-scale dynamics of mean-field games driven by local Nash equilibria, in: J. Nonlinear Sci., 2014, vol. 24, no 1, pp. 93–115.

    http://dx.doi.org/10.1007/s00332-013-9185-2
  • 75M. L. Delle Monache, P. Goatin.

    A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 435–447.
  • 76M. L. Delle Monache, P. Goatin.

    Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, in: J. Differential Equations, 2014, vol. 257, no 11, pp. 4015–4029.
  • 77B. Després, G. Poëtte, D. Lucor.

    Robust uncertainty propagation in systems of conservation laws with the entropy closure method, in: Uncertainty quantification in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, 2013, vol. 92, pp. 105–149.
  • 78M. Di Francesco, M. D. Rosini.

    Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit, in: Archive for Rational Mechanics and Analysis, January 2015. [ DOI : 10.1007/s00205-015-0843-4 ]
  • 79R. J. DiPerna.

    Measure-valued solutions to conservation laws, in: Arch. Rational Mech. Anal., 1985, vol. 88, no 3, pp. 223–270.
  • 80C. Dogbé.

    Modeling crowd dynamics by the mean-field limit approach, in: Math. Comput. Modelling, 2010, vol. 52, no 9-10, pp. 1506–1520.
  • 81R. Duvigneau.

    A Sensitivity Equation Method for Unsteady Compressible Flows: Implementation and Verification, Inria Research Report No 8739, June 2015.
  • 82R. Duvigneau, D. Pelletier.

    A sensitivity equation method for fast evaluation of nearby flows and uncertainty analysis for shape parameters, in: Int. J. of Computational Fluid Dynamics, August 2006, vol. 20, no 7, pp. 497–512.
  • 83J.-A. Désidéri.

    Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, in: Comptes Rendus de l'Académie des Sciences Paris, 2012, vol. 350, pp. 313-318.

    http://dx.doi.org/10.1016/j.crma.2012.03.014
  • 84J.-A. Désidéri.

    Multiple-Gradient Descent Algorithm (MGDA) for Pareto-Front Identification, in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon, W.; Kuznetsov, Y.A.; Neittaanmäki, P.; Pironneau, O. Eds., Springer-Verlag, 2014, vol. 34, J. Périaux and R. Glowinski Jubilees.
  • 85J.-A. Désidéri.

    Révision de l'algorithme de descente à gradients multiples (MGDA) par orthogonalisation hiérarchique, Inria, April 2015, no 8710, https://hal.inria.fr/hal-01139994.
  • 86R. Erban, M. B. Flegg, G. A. Papoian.

    Multiscale stochastic reaction-diffusion modeling: application to actin dynamics in filopodia, in: Bull. Math. Biol., 2014, vol. 76, no 4, pp. 799–818.

    http://dx.doi.org/10.1007/s11538-013-9844-3
  • 87R. Etikyala, S. Göttlich, A. Klar, S. Tiwari.

    Particle methods for pedestrian flow models: from microscopic to nonlocal continuum models, in: Math. Models Methods Appl. Sci., 2014, vol. 24, no 12, pp. 2503–2523.
  • 88R. Eymard, T. Gallouët, R. Herbin.

    Finite volume methods, in: Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020.
  • 89R. Farooqui, G. Fenteany.

    Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement, in: Journal of Cell Science, 2005, vol. 118, no Pt 1, pp. 51-63.
  • 90U. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor.

    Construction of approximate entropy measure valued solutions for systems of conservation laws, Seminar for Applied Mathematics, ETH Zürich, 2014, no 2014-33.
  • 91M. B. Flegg, S. Hellander, R. Erban.

    Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations, in: J. Comput. Phys., 2015, vol. 289, pp. 1–17.

    http://dx.doi.org/10.1016/j.jcp.2015.01.030
  • 92F. Fleuret, D. Geman.

    Graded learning for object detection, in: Proceedings of the workshop on Statistical and Computational Theories of Vision of the IEEE international conference on Computer Vision and Pattern Recognition (CVPR/SCTV), 1999, vol. 2.
  • 93B. Franz, M. B. Flegg, S. J. Chapman, R. Erban.

    Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics, in: SIAM J. Appl. Math., 2013, vol. 73, no 3, pp. 1224–1247.

    http://dx.doi.org/10.1137/120882469
  • 94M. Garavello, B. Piccoli.

    Traffic flow on networks, AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, vol. 1, Conservation laws models.
  • 95M. Garavello, B. Piccoli.

    Coupling of microscopic and phase transition models at boundary, in: Netw. Heterog. Media, 2013, vol. 8, no 3, pp. 649–661.
  • 96E. Garnier, P. Pamart, J. Dandois, P. Sagaut.

    Evaluation of the unsteady RANS capabilities for separated flow control, in: Computers & Fluids, 2012, vol. 61, pp. 39-45.
  • 97P. Goatin, M. Mimault.

    A mixed system modeling two-directional pedestrian flows, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 375–392.
  • 98P. Goatin, F. Rossi.

    A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, 2015, Preprint.

    http://arxiv.org/abs/1510.04461
  • 99P. Goatin, S. Scialanga.

    Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, in: Netw. Heterog. Media, 2016, vol. 11, no 1, pp. 107–121.

    https://doi.org/10.3934/nhm.2016.11.107
  • 100A. Griewank.

    Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, in: Optimization Methods and Software, 1992, vol. 1, pp. 35-54.
  • 101M. Gröschel, A. Keimer, G. Leugering, Z. Wang.

    Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, in: SIAM J. Control Optim., 2014, vol. 52, no 4, pp. 2141–2163.
  • 102S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl.

    Modeling, simulation and validation of material flow on conveyor belts, in: Applied Mathematical Modelling, 2014, vol. 38, no 13, pp. 3295 - 3313.
  • 103A. Habbal, H. Barelli, G. Malandain.

    Assessing the ability of the 2D Fisher-KPP equation to model cell-sheet wound closure, in: Math. Biosci., 2014, vol. 252, pp. 45–59.

    http://dx.doi.org/10.1016/j.mbs.2014.03.009
  • 104A. Habbal, M. Kallel.

    Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems, in: SIAM J. Control Optim., 2013, vol. 51, no 5, pp. 4066–4083.

    http://dx.doi.org/10.1137/120869808
  • 105X. Han, P. Sagaut, D. Lucor.

    On sensitivity of RANS simulations to uncertain turbulent inflow conditions, in: Computers & Fluids, 2012, vol. 61, no 2-5.
  • 106D. Helbing.

    Traffic and related self-driven many-particle systems, in: Rev. Mod. Phys., 2001, vol. 73, pp. 1067–1141.
  • 107D. Helbing, P. Molnar, I. J. Farkas, K. Bolay.

    Self-organizing pedestrian movement, in: Environment and planning B, 2001, vol. 28, no 3, pp. 361–384.
  • 108J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, A. M. Bayen.

    Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, in: Transportation Research Part C: Emerging Technologies, 2010, vol. 18, no 4, pp. 568–583.
  • 109S. P. Hoogendoorn, F. L. van Wageningen-Kessels, W. Daamen, D. C. Duives.

    Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, in: Physica A: Statistical Mechanics and its Applications, 2014, vol. 416, no 0, pp. 684 - 694.
  • 110H. Hristova, S. Etienne, D. Pelletier, J. Borggaard.

    A continuous sensitivity equation method for time-dependent incompressible laminar flows, in: Int. J. for Numerical Methods in Fluids, 2004, vol. 50, pp. 817-844.
  • 111C. Imbert, R. Monneau.

    Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, in: arXiv preprint arXiv:1306.2428, October 2014.
  • 112S. Jeon, H. Choi.

    Suboptimal feedback control of flow over a sphere, in: Int. J. of Heat and Fluid Flow, 2010, no 31.
  • 113M. Kallel, R. Aboulaich, A. Habbal, M. Moakher.

    A Nash-game approach to joint image restoration and segmentation, in: Appl. Math. Model., 2014, vol. 38, no 11-12, pp. 3038–3053.

    http://dx.doi.org/10.1016/j.apm.2013.11.034
  • 114O. Knio, O. L. Maitre.

    Uncertainty propagation in CFD using polynomial chaos decomposition, in: Fluid Dynamics Research, September 2006, vol. 38, no 9, pp. 616–640.
  • 115S. Kravanja, G. Turkalj, S. Šilih, T. Žula.

    Optimal design of single-story steel building structures based on parametric {MINLP} optimization, in: Journal of Constructional Steel Research, 2013, vol. 81, pp. 86 - 103. [ DOI : 10.1016/j.jcsr.2012.11.008 ]

    http://www.sciencedirect.com/science/article/pii/S0143974X12002490
  • 116A. Kurganov, A. Polizzi.

    Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrehenius Look-Ahead Dynamics, in: Netw. Heterog. Media, 2009, vol. 4, no 3, pp. 431-451.
  • 117A. Lachapelle, M.-T. Wolfram.

    On a mean field game approach modeling congestion and aversion in pedestrian crowds, in: Transportation Research Part B: Methodological, 2011, vol. 45, no 10, pp. 1572 - 1589.
  • 118J.-M. Lasry, P.-L. Lions.

    Mean field games, in: Jpn. J. Math., 2007, vol. 2, no 1, pp. 229–260.
  • 119M. J. Lighthill, G. B. Whitham.

    On kinematic waves. II. A theory of traffic flow on long crowded roads, in: Proc. Roy. Soc. London. Ser. A., 1955, vol. 229, pp. 317–345.
  • 120G. Lin, C.-H. Su, G. Karniadakis.

    Predicting shock dynamics in the presence of uncertainties, in: Journal of Computational Physics, 2006, no 217, pp. 260-276.
  • 121M. Martinelli, R. Duvigneau.

    On the use of second-order derivative and metamodel-based Monte-Carlo for uncertainty estimation in aerodynamics, in: Computers and Fluids, 2010, vol. 37, no 6.
  • 122C. Merritt, F. Forsberg, J. Liu, F. Kallel.

    In-vivo elastography in animal models: Feasibility studies, (abstract), in: J. Ultrasound Med., 2002, vol. 21, no 98.
  • 123S. Mishra, C. Schwab, J. Sukys.

    Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws, in: Lecture Notes in Computational Science and Engineering, 2013, vol. 92, pp. 225–294. [ DOI : 10.1007/978-3-319-00885-1_6 ]
  • 124W. Oberkampf, F. Blottner.

    Issues in Computational Fluid Dynamics code verification and validation, in: AIAA Journal, 1998, vol. 36, pp. 687–695.
  • 125B. Perthame.

    Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007, x+198 p.
  • 126B. Piccoli, F. Rossi.

    Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, in: Acta Appl. Math., 2013, vol. 124, pp. 73–105.
  • 127V. Picheny, M. Binois, A. Habbal.

    A Bayesian optimization approach to find Nash equilibria, November 2016, working paper or preprint.

    https://hal.inria.fr/hal-01405074
  • 128N. H. Pijls, B. de Bruyne, K. Peels, P. H. van der Voort, H. J. Bonnier, J. Bartunek, J. J. Koolen.

    Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses, in: New England Journal of Medicine, 1996, vol. 334, no 26, pp. 1703-1708, PMID: 8637515.

    http://dx.doi.org/10.1056/NEJM199606273342604
  • 129F. Poirion.

    Stochastic Multi Gradient Descent Algorithm, ONERA, July 2014.
  • 130M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, P. Silberzan.

    Collective migration of an epithelial monolayer in response to a model wound, in: Proceedings of the National Academy of Sciences, 2007, vol. 104, no 41, pp. 15988-15993. [ DOI : 10.1073/pnas.0705062104 ]
  • 131F. S. Priuli.

    First order mean field games in crowd dynamics, in: ArXiv e-prints, February 2014.
  • 132M. Putko, P. Newman, A. Taylor, L. Green.

    Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives, in: 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, June 2001, AIAA Paper 2001-2528.
  • 133C. Qi, K. Gallivan, P.-A. Absil.

    Riemannian BFGS Algorithm with Applications, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, W. Michiels (editors), Springer Berlin Heidelberg, 2010, pp. 183-192.

    http://dx.doi.org/10.1007/978-3-642-12598-0_16
  • 134J. Reilly, W. Krichene, M. L. Delle Monache, S. Samaranayake, P. Goatin, A. M. Bayen.

    Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering, in: J. Optim. Theory Appl., 2015, vol. 167, no 2, pp. 733–760.
  • 135P. I. Richards.

    Shock waves on the highway, in: Operations Res., 1956, vol. 4, pp. 42–51.
  • 136P. Sagaut.

    Large Eddy Simulation for Incompressible Flows An Introduction, Springer Berlin Heidelberg, 2006.
  • 137J. Schaefer, T. West, S. Hosder, C. Rumsey, J.-R. Carlson, W. Kleb.

    Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows, in: 22nd AIAA Computational Fluid Dynamics Conference, 22-26 June 2015, Dallas, USA., 2015.
  • 138V. Schleper.

    A hybrid model for traffic flow and crowd dynamics with random individual properties, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 393-413.
  • 139A. Sopasakis, M. A. Katsoulakis.

    Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, in: SIAM J. Appl. Math., 2006, vol. 66, no 3, pp. 921–944 (electronic).
  • 140P. R. Spalart.

    Detached-Eddy Simulation, in: Annual Review of Fluid Mechanics, 2009, vol. 41, pp. 181-202.
  • 141S. Tokareva, S. Mishra, C. Schwab.

    High Order Stochastic Finite Volume Method for the Uncertainty Quantification in Hyperbolic Conservtion Laws with Random Initial Data and Flux Coefficients, 2012, Proc. ECCOMAS.
  • 142É. Turgeon, D. Pelletier, J. Borggaard.

    Sensitivity and Uncertainty Analysis for Variable Property Flows, in: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2001, AIAA Paper 2001-0139.
  • 143C. Villani.

    Topics in optimal transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003, vol. 58, xvi+370 p.
  • 144C. Villani.

    Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new.
  • 145R. Walter, L. Huyse.

    Uncertainty analysis for fluid mechanics with applications, ICASE, February 2002, no 2002–1.
  • 146D. Xiu, G. Karniadakis.

    Modeling uncertainty in flow simulations via generalized Polynomial Chaos, in: Journal of Computational Physics, 2003, no 187, pp. 137-167.
  • 147D. You, P. Moin.

    Active control of flow separation over an airfoil using synthetic jets, in: J. of Fluids and Structures, 2008, vol. 24, pp. 1349-1357.
  • 148A. Zerbinati, A. Minelli, I. Ghazlane, J.-A. Désidéri.

    Meta-Model-Assisted MGDA for Multi-Objective Functional Optimization, in: Computers and Fluids, 2014, vol. 102, pp. 116-130, http://www.sciencedirect.com/science/article/pii/S0045793014002576#.