Bibliography
Publications of the year
Articles in International Peer-Reviewed Journals
-
1B. Abou El Majd, O. Ouchetto, J.-A. Désidéri, A. Habbal.
Hessian transfer for multilevel and adaptive shape optimization , in: International Journal for Simulation and Multidisciplinary Design Optimization, 2017, vol. 8, 18 p. [ DOI : 10.1051/smdo/2017002 ]
https://hal.inria.fr/hal-01440209 -
2R. Aboulaich, R. Ellaia, S. El Moumen, A. Habbal, N. Moussaid.
The Mean-CVaR Model for Portfolio Optimization Using a Multi-Objective Approach and the Kalai-Smorodinsky Solution, in: MATEC Web of Conferences, 2017, vol. 105, 4 p. [ DOI : 10.1051/matecconf/201710500010 ]
https://hal.inria.fr/hal-01575730 -
3A. Benki, A. Habbal, G. Mathis.
A metamodel-based multicriteria shape optimization process for an aerosol can, in: Alexandria Engineering Journal, 2017, 12 p. [ DOI : 10.1016/j.aej.2017.03.036 ]
https://hal.inria.fr/hal-01575721 -
4F. Berthelin, P. Goatin.
Particle approximation of a constrained model for traffic flow, in: NoDEA : Nonlinear Differential Equations and Applications, 2017, vol. 24, no 5, pp. 24-55.
https://hal.archives-ouvertes.fr/hal-01437867 -
5C. Chalons, P. Goatin B, L. M. Villada.
High order numerical schemes for one-dimension non-local conservation laws, in: SIAM Journal on Scientific Computing, 2017, https://arxiv.org/abs/1612.05775, forthcoming.
https://hal.inria.fr/hal-01418749 -
6C. De Filippis, P. Goatin.
The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, in: Nonlinear Analysis, 2017, vol. 161, pp. 131-156.
https://hal.inria.fr/hal-01362504 -
7M. L. Delle Monache, P. Goatin.
Stability estimates for scalar conservation laws with moving flux constraints, in: Networks and Heterogeneous Media, June 2017, vol. 12, no 2, pp. 245–258. [ DOI : 10.3934/nhm.2017010 ]
https://hal.inria.fr/hal-01380368 -
8M. L. Delle Monache, P. Goatin, B. Piccoli.
Priority-based Riemann solver for traffic flow on networks , in: Communications in Mathematical Sciences, 2017, forthcoming.
https://hal.inria.fr/hal-01336823 -
9C. Durantin, J. Rouxel, J.-A. Desideri, A. Glière.
Multifidelity surrogate modeling based on Radial Basis Functions, in: Structural and Multidisciplinary Optimization, 2017, vol. 56, no 5, pp. 1061-1075. [ DOI : 10.1007/s00158-017-1703-7 ]
https://hal.inria.fr/hal-01660796 -
10P. Goatin, F. Rossi.
A traffic flow model with non-smooth metric interaction: Well-posedness and micro-macro limit, in: Communications in Mathematical Sciences, 2017, vol. 15, no 1, pp. 261 - 287, https://arxiv.org/abs/1510.04461. [ DOI : 10.4310/CMS.2017.v15.n1.a12 ]
https://hal.archives-ouvertes.fr/hal-01215944 -
11O. Kolb, S. Göttlich, P. Goatin.
Capacity drop and traffic control for a second order traffic model, in: Networks and Heterogeneous Media, 2017, vol. 12, no 4, pp. 663-681.
https://hal.inria.fr/hal-01402608 -
12F. Poirion, Q. Mercier, J.-A. Desideri.
Descent algorithm for nonsmooth stochastic multiobjective optimization, in: Computational Optimization and Applications, 2017, vol. 68, no 2, pp. 317-331. [ DOI : 10.1007/s10589-017-9921-x ]
https://hal.inria.fr/hal-01660788 -
13S. Roy, A. Borzì, A. Habbal.
Pedestrian motion modeled by FP-constrained Nash games, in: Royal Society Open Science, 2017. [ DOI : 10.1098/rsos.170648 ]
https://hal.inria.fr/hal-01586678 -
14M. Sacher, F. Hauville, R. Duvigneau, O. Le Maître, N. AUBIN, M. Durand.
Efficient optimization procedure in non-linear fluid-structure interaction problem: Application to mainsail trimming in upwind conditions, in: Journal of Fluids and Structures, February 2017, vol. 69, pp. 209 - 231. [ DOI : 10.1016/j.jfluidstructs.2016.12.006 ]
https://hal.inria.fr/hal-01589317 -
15S. Samaranayake, J. Reilly, W. Krichene, M. L. Delle Monache, P. Goatin, A. Bayen.
Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks, in: Transportation Science, 2017, forthcoming.
https://hal.inria.fr/hal-01095707 -
16S. Villa, P. Goatin, C. Chalons.
Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, in: Discrete and Continuous Dynamical Systems - Series B, 2017, vol. 22, no 10, pp. 3921-3952.
https://hal.archives-ouvertes.fr/hal-01347925 -
17B. Yahyaoui, M. Ayadi, A. Habbal.
Fisher-KPP with time dependent diffusion is able to model cell-sheet activated and inhibited wound closure, in: Mathematical Biosciences, 2017, vol. 292, pp. 36-45. [ DOI : 10.1016/j.mbs.2017.07.009 ]
https://hal.inria.fr/hal-01575717
International Conferences with Proceedings
-
18E. Berrini, B. Mourrain, R. Duvigneau, M. Sacher, Y. Roux.
Geometric model for automated multi-objective optimization of foils, in: Marine 2017, Nantes, France, VII International Conference on Computational Methods in Marine Engineering, MARINE 2017, May 2017, pp. 473-484.
https://hal.archives-ouvertes.fr/hal-01524287 -
19M. Binois, V. Picheny, A. Habbal.
The Kalai-Smorodinski solution for many-objective Bayesian optimization, in: NIPS 2017 - 31st Conference on Neural Information Processing Systems, Long Beach, United States, December 2017, pp. 1-6.
https://hal.inria.fr/hal-01656393 -
20C. Chalons, R. Duvigneau, C. Fiorini.
Sensitivity analysis for the Euler equations in Lagrangian coordinates, in: FVCA - 8th International Symposium on Finite Volumes for Complex Applications, Lille, France, June 2017.
https://hal.inria.fr/hal-01589307 -
21A. Gdhami, R. Duvigneau, M. Moakher.
Méthode de Galerkin Discontinue : Cas de l'analyse isogéométrique, in: TAM-TAM 2017 - Tendances dans les Applications Mathématiques en Tunisie, Algérie et Maroc, Hammamet, Tunisia, May 2017.
https://hal.inria.fr/hal-01589293 -
22V. Picheny, M. Binois, A. Habbal.
Solving Kalai-Smorodinski Equilibria Using Gaussian Process Regression, in: ENBIS 2017 - 17th Annual Conference of the European Network for Business and Industrial Statistics, Naples, Italy, September 2017.
https://hal.inria.fr/hal-01656366 -
23M. Sacher, M. Durand, E. Berrini, F. Hauville, R. Duvigneau, O. Le Maıtre, J. A. ASTOLFI.
Flexible hydrofoil optimization for the 35th America's cup with constrained Ego Method, in: INNOVSAIL International Conference on Innovation in High Performance Sailing Yachts, Lorient, France, P. Bot (editor), INNOVSAIL 2017, 4th Edition, CVET and Ecole Navale, June 2017, pp. 193-206.
https://hal.archives-ouvertes.fr/hal-01583591
Conferences without Proceedings
-
24R. Duvigneau.
High-Order Taylor Expansions for Compressible Flows, in: SIAM Optimization, Vancouver, Canada, May 2017.
https://hal.inria.fr/hal-01589254 -
25R. Duvigneau, A. Gdhami, M. Moakher.
Isogeometric Analysis for Hyperbolic Conservation Laws using a Discontinuous Galerkin Method, in: International Conference on Isogeometric Analysis, Pavia, Italy, September 2017.
https://hal.inria.fr/hal-01589270 -
26C. Fiorini, R. Duvigneau, C. Chalons.
Sensitivity Analysis for Hyperbolic Systems of Conservation Laws, in: SIAM Optimization, Vancouver, Canada, May 2017.
https://hal.inria.fr/hal-01589247 -
27A. Gdhami, R. Duvigneau, M. Moakher.
Isogeometric analysis for hyperbolic PDEs using a Discontinuous Galerkin method, in: Congrès SMAI, La Tremblade, France, June 2017.
https://hal.inria.fr/hal-01589278 -
28M. Sacher, R. Duvigneau, O. Le Maitre, M. Durand, E. Berrini, F. Hauville, J. A. ASTOLFI.
Surrogates and Classification Approaches for Efficient Global Optimization (EGO) with Inequality Constraints, in: SIAM Optimization, Vancouver, Canada, May 2017.
https://hal.inria.fr/hal-01589262
Scientific Books (or Scientific Book chapters)
-
29L. Bociu, J.-A. Désidéri, A. Habbal.
System Modeling and Optimization: 27th IFIP TC 7 Conference, CSMO 2015, Sophia Antipolis, France, June 29 - July 3, 2015, Revised Selected Papers, IFIP Advances in Information and Communication Technology, Springer International Publishing, 2017, vol. AICT-494. [ DOI : 10.1007/978-3-319-55795-3 ]
https://hal.inria.fr/hal-01626887 -
30J.-A. Desideri, R. Duvigneau.
Parametric optimization of pulsating jets in unsteady flow by Multiple-Gradient Descent Algorithm (MGDA), in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, J. Périaux, W. Fitzgibbon, B. Chetverushkin, O. Pironneau (editors), January 2017.
https://hal.inria.fr/hal-01414741
Internal Reports
-
31N. Abettan, R. Duvigneau, A. Habbal.
Aerodynamic optimization of the cooling duct of a Formula-E vehicle, Inria - Sophia Antipolis, November 2017, no RR-9126.
https://hal.inria.fr/hal-01645450
Other Publications
-
32C. Chalons, R. Duvigneau, C. Fiorini.
Sensitivity analysis and numerical diffusion effects for hyperbolic PDE systems with discontinuous solutions. The case of barotropic Euler equations in Lagrangian coordinates, July 2017, Pre-print submitted to SIAM Scientific Computing..
https://hal.inria.fr/hal-01589337 -
33F. A. Chiarello, P. Goatin.
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, July 2017, working paper or preprint.
https://hal.inria.fr/hal-01567575 -
34R. Duvigneau.
Isogeometric analysis for compressible flows using a Discontinuous Galerkin method, February 2017, Pre-print submitted to Computer Methods in Applied Mechanics and Engineering.
https://hal.inria.fr/hal-01589344 -
35P. Goatin, G. Piacentini, A. Ferrara.
Traffic control via moving bottleneck of coordinated vehicles, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01644823 -
36O. Kolb, G. Costeseque, P. Goatin, S. Göttlich.
Pareto-optimal coupling conditions for a second order traffic flow model at junctions, June 2017, working paper or preprint.
https://hal.inria.fr/hal-01551100 -
37N. LAURENT-BROUTY, A. Keimer, F. Farokhi, H. Signargout, V. Cvetkovic, A. M. Bayen, K. H. Johansson.
Integration of Information Patterns in the Modeling and Design of Mobility Management Services, December 2017, https://arxiv.org/abs/1707.07371 - 24 pages, 11 Figures.
https://hal.inria.fr/hal-01656767 -
38N. Laurent-Brouty, G. Costeseque, P. Goatin.
A coupled PDE-ODE model for bounded acceleration in macroscopic traffic flow models, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01636156 -
39E. Rossi, R. M. Colombo.
Non Local Conservation Laws in Bounded Domains, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01634435
-
40R. Abgrall, P. M. Congedo.
A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems, in: J. Comput. Physics, 2012. -
41A. Aggarwal, R. M. Colombo, P. Goatin.
Nonlocal systems of conservation laws in several space dimensions, in: SIAM Journal on Numerical Analysis, 2015, vol. 52, no 2, pp. 963-983.
https://hal.inria.fr/hal-01016784 -
42G. Alessandrini.
Examples of instability in inverse boundary-value problems, in: Inverse Problems, 1997, vol. 13, no 4, pp. 887–897.
http://dx.doi.org/10.1088/0266-5611/13/4/001 -
43L. Almeida, P. Bagnerini, A. Habbal.
Modeling actin cable contraction, in: Comput. Math. Appl., 2012, vol. 64, no 3, pp. 310–321.
http://dx.doi.org/10.1016/j.camwa.2012.02.041 -
44L. Almeida, P. Bagnerini, A. Habbal, S. Noselli, F. Serman.
A Mathematical Model for Dorsal Closure, in: Journal of Theoretical Biology, January 2011, vol. 268, no 1, pp. 105-119. [ DOI : 10.1016/j.jtbi.2010.09.029 ]
http://hal.inria.fr/inria-00544350/en -
45D. Amadori, W. Shen.
An integro-differential conservation law arising in a model of granular flow, in: J. Hyperbolic Differ. Equ., 2012, vol. 9, no 1, pp. 105–131. -
46P. Amorim.
On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, in: Bull. Braz. Math. Soc. (N.S.), 2012, vol. 43, no 4, pp. 599–614. -
47P. Amorim, R. Colombo, A. Teixeira.
On the Numerical Integration of Scalar Nonlocal Conservation Laws, in: ESAIM M2AN, 2015, vol. 49, no 1, pp. 19–37. -
48M. Annunziato, A. Borzì.
A Fokker-Planck control framework for multidimensional stochastic processes, in: Journal of Computational and Applied Mathematics, 2013, vol. 237, pp. 487-507. -
49A. Belme, F. Alauzet, A. Dervieux.
Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, in: J. Comput. Physics, 2012, vol. 231, no 19, pp. 6323–6348. -
50S. Benzoni-Gavage, R. M. Colombo, P. Gwiazda.
Measure valued solutions to conservation laws motivated by traffic modelling, in: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2006, vol. 462, no 2070, pp. 1791–1803. -
51E. Bertino, R. Duvigneau, P. Goatin.
Uncertainties in traffic flow and model validation on GPS data, In preparation. -
52F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory.
On nonlocal conservation laws modelling sedimentation, in: Nonlinearity, 2011, vol. 24, no 3, pp. 855–885. -
53S. Blandin, P. Goatin.
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, in: Numer. Math., 2016, vol. 132, no 2, pp. 217–241.
https://doi.org/10.1007/s00211-015-0717-6 -
54J. Borggaard, J. Burns.
A {PDE} Sensitivity Equation Method for Optimal Aerodynamic Design, in: Journal of Computational Physics, 1997, vol. 136, no 2, pp. 366 - 384. [ DOI : 10.1006/jcph.1997.5743 ]
http://www.sciencedirect.com/science/article/pii/S0021999197957430 -
55R. Bourguet, M. Brazza, G. Harran, R. El Akoury.
Anisotropic Organised Eddy Simulation for the prediction of non-equilibrium turbulent flows around bodies, in: J. of Fluids and Structures, 2008, vol. 24, no 8, pp. 1240–1251. -
56A. Bressan, S. Čanić, M. Garavello, M. Herty, B. Piccoli.
Flows on networks: recent results and perspectives, in: EMS Surv. Math. Sci., 2014, vol. 1, no 1, pp. 47–111. -
57M. Burger, M. Di Francesco, P. A. Markowich, M.-T. Wolfram.
Mean field games with nonlinear mobilities in pedestrian dynamics, in: Discrete Contin. Dyn. Syst. Ser. B, 2014, vol. 19, no 5, pp. 1311–1333. -
58M. Burger, J. Haskovec, M.-T. Wolfram.
Individual based and mean-field modelling of direct aggregation, in: Physica D, 2013, vol. 260, pp. 145–158. -
59A. Cabassi, P. Goatin.
Validation of traffic flow models on processed GPS data, 2013, Research Report RR-8382. -
60J. A. Carrillo, S. Martin, M.-T. Wolfram.
A local version of the Hughes model for pedestrian flow, 2015, Preprint. -
61C. Chalons, M. L. Delle Monache, P. Goatin.
A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, 2015, Preprint. -
62C. Claudel, A. Bayen.
Lax-Hopf Based Incorporation of Internal Boundary Conditions Into Hamilton-Jacobi Equation. Part II: Computational Methods, in: Automatic Control, IEEE Transactions on, May 2010, vol. 55, no 5, pp. 1158-1174. -
63C. G. Claudel, A. M. Bayen.
Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, in: SIAM J. Control Optim., 2011, vol. 49, no 2, pp. 383–402. -
64R. M. Colombo, M. Garavello, M. Lécureux-Mercier.
A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC, in: Mathematical Models and Methods in Applied Sciences, 2012, vol. 22, no 04, 1150023 p. -
65R. M. Colombo, M. Herty, M. Mercier.
Control of the continuity equation with a non local flow, in: ESAIM Control Optim. Calc. Var., 2011, vol. 17, no 2, pp. 353–379. -
66R. M. Colombo, M. Lécureux-Mercier.
Nonlocal crowd dynamics models for several populations, in: Acta Math. Sci. Ser. B Engl. Ed., 2012, vol. 32, no 1, pp. 177–196. -
67R. M. Colombo, F. Marcellini.
A mixed ODEâPDE model for vehicular traffic, in: Mathematical Methods in the Applied Sciences, 2015, vol. 38, no 7, pp. 1292–1302. -
68R. M. Colombo, E. Rossi.
On the micro-macro limit in traffic flow, in: Rend. Semin. Mat. Univ. Padova, 2014, vol. 131, pp. 217–235. -
69G. Costeseque, J.-P. Lebacque.
Discussion about traffic junction modelling: conservation laws vs Hamilton-Jacobi equations, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 411–433. -
70G. Crippa, M. Lécureux-Mercier.
Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, in: Nonlinear Differential Equations and Applications NoDEA, 2012, pp. 1-15. -
71E. Cristiani, B. Piccoli, A. Tosin.
How can macroscopic models reveal self-organization in traffic flow?, in: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, Dec 2012, pp. 6989-6994. -
72E. Cristiani, B. Piccoli, A. Tosin.
Multiscale modeling of pedestrian dynamics, MS&A. Modeling, Simulation and Applications, Springer, Cham, 2014, vol. 12, xvi+260 p. -
73C. M. Dafermos.
Solutions in for a conservation law with memory, in: Analyse mathématique et applications, Montrouge, Gauthier-Villars, 1988, pp. 117–128. -
74P. Degond, J.-G. Liu, C. Ringhofer.
Large-scale dynamics of mean-field games driven by local Nash equilibria, in: J. Nonlinear Sci., 2014, vol. 24, no 1, pp. 93–115.
http://dx.doi.org/10.1007/s00332-013-9185-2 -
75M. L. Delle Monache, P. Goatin.
A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, in: Discrete Contin. Dyn. Syst. Ser. S, 2014, vol. 7, no 3, pp. 435–447. -
76M. L. Delle Monache, P. Goatin.
Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, in: J. Differential Equations, 2014, vol. 257, no 11, pp. 4015–4029. -
77B. Després, G. Poëtte, D. Lucor.
Robust uncertainty propagation in systems of conservation laws with the entropy closure method, in: Uncertainty quantification in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., Springer, Heidelberg, 2013, vol. 92, pp. 105–149. -
78M. Di Francesco, M. D. Rosini.
Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit, in: Archive for Rational Mechanics and Analysis, January 2015. [ DOI : 10.1007/s00205-015-0843-4 ] -
79R. J. DiPerna.
Measure-valued solutions to conservation laws, in: Arch. Rational Mech. Anal., 1985, vol. 88, no 3, pp. 223–270. -
80C. Dogbé.
Modeling crowd dynamics by the mean-field limit approach, in: Math. Comput. Modelling, 2010, vol. 52, no 9-10, pp. 1506–1520. -
81R. Duvigneau.
A Sensitivity Equation Method for Unsteady Compressible Flows: Implementation and Verification, Inria Research Report No 8739, June 2015. -
82R. Duvigneau, D. Pelletier.
A sensitivity equation method for fast evaluation of nearby flows and uncertainty analysis for shape parameters, in: Int. J. of Computational Fluid Dynamics, August 2006, vol. 20, no 7, pp. 497–512. -
83J.-A. Désidéri.
Multiple-gradient descent algorithm (MGDA) for multiobjective optimization, in: Comptes Rendus de l'Académie des Sciences Paris, 2012, vol. 350, pp. 313-318.
http://dx.doi.org/10.1016/j.crma.2012.03.014 -
84J.-A. Désidéri.
Multiple-Gradient Descent Algorithm (MGDA) for Pareto-Front Identification, in: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Modeling, Simulation and Optimization for Science and Technology, Fitzgibbon, W.; Kuznetsov, Y.A.; Neittaanmäki, P.; Pironneau, O. Eds., Springer-Verlag, 2014, vol. 34, J. Périaux and R. Glowinski Jubilees. -
85J.-A. Désidéri.
Révision de l'algorithme de descente à gradients multiples (MGDA) par orthogonalisation hiérarchique, Inria, April 2015, no 8710, https://hal.inria.fr/hal-01139994. -
86R. Erban, M. B. Flegg, G. A. Papoian.
Multiscale stochastic reaction-diffusion modeling: application to actin dynamics in filopodia, in: Bull. Math. Biol., 2014, vol. 76, no 4, pp. 799–818.
http://dx.doi.org/10.1007/s11538-013-9844-3 -
87R. Etikyala, S. Göttlich, A. Klar, S. Tiwari.
Particle methods for pedestrian flow models: from microscopic to nonlocal continuum models, in: Math. Models Methods Appl. Sci., 2014, vol. 24, no 12, pp. 2503–2523. -
88R. Eymard, T. Gallouët, R. Herbin.
Finite volume methods, in: Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020. -
89R. Farooqui, G. Fenteany.
Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement, in: Journal of Cell Science, 2005, vol. 118, no Pt 1, pp. 51-63. -
90U. Fjordholm, R. Kappeli, S. Mishra, E. Tadmor.
Construction of approximate entropy measure valued solutions for systems of conservation laws, Seminar for Applied Mathematics, ETH Zürich, 2014, no 2014-33. -
91M. B. Flegg, S. Hellander, R. Erban.
Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations, in: J. Comput. Phys., 2015, vol. 289, pp. 1–17.
http://dx.doi.org/10.1016/j.jcp.2015.01.030 -
92F. Fleuret, D. Geman.
Graded learning for object detection, in: Proceedings of the workshop on Statistical and Computational Theories of Vision of the IEEE international conference on Computer Vision and Pattern Recognition (CVPR/SCTV), 1999, vol. 2. -
93B. Franz, M. B. Flegg, S. J. Chapman, R. Erban.
Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics, in: SIAM J. Appl. Math., 2013, vol. 73, no 3, pp. 1224–1247.
http://dx.doi.org/10.1137/120882469 -
94M. Garavello, B. Piccoli.
Traffic flow on networks, AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, vol. 1, Conservation laws models. -
95M. Garavello, B. Piccoli.
Coupling of microscopic and phase transition models at boundary, in: Netw. Heterog. Media, 2013, vol. 8, no 3, pp. 649–661. -
96E. Garnier, P. Pamart, J. Dandois, P. Sagaut.
Evaluation of the unsteady RANS capabilities for separated flow control, in: Computers & Fluids, 2012, vol. 61, pp. 39-45. -
97P. Goatin, M. Mimault.
A mixed system modeling two-directional pedestrian flows, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 375–392. -
98P. Goatin, F. Rossi.
A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, 2015, Preprint.
http://arxiv.org/abs/1510.04461 -
99P. Goatin, S. Scialanga.
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, in: Netw. Heterog. Media, 2016, vol. 11, no 1, pp. 107–121.
https://doi.org/10.3934/nhm.2016.11.107 -
100A. Griewank.
Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, in: Optimization Methods and Software, 1992, vol. 1, pp. 35-54. -
101M. Gröschel, A. Keimer, G. Leugering, Z. Wang.
Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, in: SIAM J. Control Optim., 2014, vol. 52, no 4, pp. 2141–2163. -
102S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl.
Modeling, simulation and validation of material flow on conveyor belts, in: Applied Mathematical Modelling, 2014, vol. 38, no 13, pp. 3295 - 3313. -
103A. Habbal, H. Barelli, G. Malandain.
Assessing the ability of the 2D Fisher-KPP equation to model cell-sheet wound closure, in: Math. Biosci., 2014, vol. 252, pp. 45–59.
http://dx.doi.org/10.1016/j.mbs.2014.03.009 -
104A. Habbal, M. Kallel.
Neumann-Dirichlet Nash strategies for the solution of elliptic Cauchy problems, in: SIAM J. Control Optim., 2013, vol. 51, no 5, pp. 4066–4083.
http://dx.doi.org/10.1137/120869808 -
105X. Han, P. Sagaut, D. Lucor.
On sensitivity of RANS simulations to uncertain turbulent inflow conditions, in: Computers & Fluids, 2012, vol. 61, no 2-5. -
106D. Helbing.
Traffic and related self-driven many-particle systems, in: Rev. Mod. Phys., 2001, vol. 73, pp. 1067–1141. -
107D. Helbing, P. Molnar, I. J. Farkas, K. Bolay.
Self-organizing pedestrian movement, in: Environment and planning B, 2001, vol. 28, no 3, pp. 361–384. -
108J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, A. M. Bayen.
Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, in: Transportation Research Part C: Emerging Technologies, 2010, vol. 18, no 4, pp. 568–583. -
109S. P. Hoogendoorn, F. L. van Wageningen-Kessels, W. Daamen, D. C. Duives.
Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, in: Physica A: Statistical Mechanics and its Applications, 2014, vol. 416, no 0, pp. 684 - 694. -
110H. Hristova, S. Etienne, D. Pelletier, J. Borggaard.
A continuous sensitivity equation method for time-dependent incompressible laminar flows, in: Int. J. for Numerical Methods in Fluids, 2004, vol. 50, pp. 817-844. -
111C. Imbert, R. Monneau.
Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, in: arXiv preprint arXiv:1306.2428, October 2014. -
112S. Jeon, H. Choi.
Suboptimal feedback control of flow over a sphere, in: Int. J. of Heat and Fluid Flow, 2010, no 31. -
113M. Kallel, R. Aboulaich, A. Habbal, M. Moakher.
A Nash-game approach to joint image restoration and segmentation, in: Appl. Math. Model., 2014, vol. 38, no 11-12, pp. 3038–3053.
http://dx.doi.org/10.1016/j.apm.2013.11.034 -
114O. Knio, O. L. Maitre.
Uncertainty propagation in CFD using polynomial chaos decomposition, in: Fluid Dynamics Research, September 2006, vol. 38, no 9, pp. 616–640. -
115S. Kravanja, G. Turkalj, S. Šilih, T. Žula.
Optimal design of single-story steel building structures based on parametric {MINLP} optimization, in: Journal of Constructional Steel Research, 2013, vol. 81, pp. 86 - 103. [ DOI : 10.1016/j.jcsr.2012.11.008 ]
http://www.sciencedirect.com/science/article/pii/S0143974X12002490 -
116A. Kurganov, A. Polizzi.
Non-Oscillatory Central Schemes for a Traffic Flow Model with Arrehenius Look-Ahead Dynamics, in: Netw. Heterog. Media, 2009, vol. 4, no 3, pp. 431-451. -
117A. Lachapelle, M.-T. Wolfram.
On a mean field game approach modeling congestion and aversion in pedestrian crowds, in: Transportation Research Part B: Methodological, 2011, vol. 45, no 10, pp. 1572 - 1589. -
118J.-M. Lasry, P.-L. Lions.
Mean field games, in: Jpn. J. Math., 2007, vol. 2, no 1, pp. 229–260. -
119M. J. Lighthill, G. B. Whitham.
On kinematic waves. II. A theory of traffic flow on long crowded roads, in: Proc. Roy. Soc. London. Ser. A., 1955, vol. 229, pp. 317–345. -
120G. Lin, C.-H. Su, G. Karniadakis.
Predicting shock dynamics in the presence of uncertainties, in: Journal of Computational Physics, 2006, no 217, pp. 260-276. -
121M. Martinelli, R. Duvigneau.
On the use of second-order derivative and metamodel-based Monte-Carlo for uncertainty estimation in aerodynamics, in: Computers and Fluids, 2010, vol. 37, no 6. -
122C. Merritt, F. Forsberg, J. Liu, F. Kallel.
In-vivo elastography in animal models: Feasibility studies, (abstract), in: J. Ultrasound Med., 2002, vol. 21, no 98. -
123S. Mishra, C. Schwab, J. Sukys.
Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws, in: Lecture Notes in Computational Science and Engineering, 2013, vol. 92, pp. 225–294. [ DOI : 10.1007/978-3-319-00885-1_6 ] -
124W. Oberkampf, F. Blottner.
Issues in Computational Fluid Dynamics code verification and validation, in: AIAA Journal, 1998, vol. 36, pp. 687–695. -
125B. Perthame.
Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007, x+198 p. -
126B. Piccoli, F. Rossi.
Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, in: Acta Appl. Math., 2013, vol. 124, pp. 73–105. -
127V. Picheny, M. Binois, A. Habbal.
A Bayesian optimization approach to find Nash equilibria, November 2016, working paper or preprint.
https://hal.inria.fr/hal-01405074 -
128N. H. Pijls, B. de Bruyne, K. Peels, P. H. van der Voort, H. J. Bonnier, J. Bartunek, J. J. Koolen.
Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses, in: New England Journal of Medicine, 1996, vol. 334, no 26, pp. 1703-1708, PMID: 8637515.
http://dx.doi.org/10.1056/NEJM199606273342604 -
129F. Poirion.
Stochastic Multi Gradient Descent Algorithm, ONERA, July 2014. -
130M. Poujade, E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, P. Silberzan.
Collective migration of an epithelial monolayer in response to a model wound, in: Proceedings of the National Academy of Sciences, 2007, vol. 104, no 41, pp. 15988-15993. [ DOI : 10.1073/pnas.0705062104 ] -
131F. S. Priuli.
First order mean field games in crowd dynamics, in: ArXiv e-prints, February 2014. -
132M. Putko, P. Newman, A. Taylor, L. Green.
Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives, in: 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, June 2001, AIAA Paper 2001-2528. -
133C. Qi, K. Gallivan, P.-A. Absil.
Riemannian BFGS Algorithm with Applications, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, W. Michiels (editors), Springer Berlin Heidelberg, 2010, pp. 183-192.
http://dx.doi.org/10.1007/978-3-642-12598-0_16 -
134J. Reilly, W. Krichene, M. L. Delle Monache, S. Samaranayake, P. Goatin, A. M. Bayen.
Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering, in: J. Optim. Theory Appl., 2015, vol. 167, no 2, pp. 733–760. -
135P. I. Richards.
Shock waves on the highway, in: Operations Res., 1956, vol. 4, pp. 42–51. -
136P. Sagaut.
Large Eddy Simulation for Incompressible Flows An Introduction, Springer Berlin Heidelberg, 2006. -
137J. Schaefer, T. West, S. Hosder, C. Rumsey, J.-R. Carlson, W. Kleb.
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows, in: 22nd AIAA Computational Fluid Dynamics Conference, 22-26 June 2015, Dallas, USA., 2015. -
138V. Schleper.
A hybrid model for traffic flow and crowd dynamics with random individual properties, in: Math. Biosci. Eng., 2015, vol. 12, no 2, pp. 393-413. -
139A. Sopasakis, M. A. Katsoulakis.
Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, in: SIAM J. Appl. Math., 2006, vol. 66, no 3, pp. 921–944 (electronic). -
140P. R. Spalart.
Detached-Eddy Simulation, in: Annual Review of Fluid Mechanics, 2009, vol. 41, pp. 181-202. -
141S. Tokareva, S. Mishra, C. Schwab.
High Order Stochastic Finite Volume Method for the Uncertainty Quantification in Hyperbolic Conservtion Laws with Random Initial Data and Flux Coefficients, 2012, Proc. ECCOMAS. -
142É. Turgeon, D. Pelletier, J. Borggaard.
Sensitivity and Uncertainty Analysis for Variable Property Flows, in: 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2001, AIAA Paper 2001-0139. -
143C. Villani.
Topics in optimal transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003, vol. 58, xvi+370 p. -
144C. Villani.
Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new. -
145R. Walter, L. Huyse.
Uncertainty analysis for fluid mechanics with applications, ICASE, February 2002, no 2002–1. -
146D. Xiu, G. Karniadakis.
Modeling uncertainty in flow simulations via generalized Polynomial Chaos, in: Journal of Computational Physics, 2003, no 187, pp. 137-167. -
147D. You, P. Moin.
Active control of flow separation over an airfoil using synthetic jets, in: J. of Fluids and Structures, 2008, vol. 24, pp. 1349-1357. -
148A. Zerbinati, A. Minelli, I. Ghazlane, J.-A. Désidéri.
Meta-Model-Assisted MGDA for Multi-Objective Functional Optimization, in: Computers and Fluids, 2014, vol. 102, pp. 116-130, http://www.sciencedirect.com/science/article/pii/S0045793014002576#.