EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1E. Audusse, M.-O. Bristeau, M. Pelanti, J. Sainte-Marie.

    Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model. Kinetic interpretation and numerical validation, in: J. Comput. Phys., 2011, vol. 230, pp. 3453-3478.

    http://dx.doi.org/10.1016/j.jcp.2011.01.042
  • 2E. Audusse, M.-O. Bristeau, B. Perthame, J. Sainte-Marie.

    A multilayer Saint-Venant system with mass exchanges for Shallow Water flows. Derivation and numerical validation, in: ESAIM Math. Model. Numer. Anal., 2011, vol. 45, pp. 169-200.

    http://dx.doi.org/10.1051/m2an/2010036
  • 3M.-O. Bristeau, A. Mangeney, J. Sainte-Marie, N. Seguin.

    An energy-consistent depth-averaged Euler system: derivation and properties, in: Discrete and Continuous Dynamical Systems - Series B, 2015, vol. 20, no 4, 28 p.
  • 4J. Sainte-Marie.

    Vertically averaged models for the free surface Euler system. Derivation and kinetic interpretation, in: Math. Models Methods Appl. Sci. (M3AS), 2011, vol. 21, no 3, pp. 459-490.

    http://dx.doi.org/10.1142/S0218202511005118
Publications of the year

Articles in International Peer-Reviewed Journals

  • 5N. Aguillon, F. Lagoutière, N. Seguin.

    Convergence of finite volumes schemes for the coupling between the inviscid Burgers equation and a particle, in: Mathematics of Computation, 2017, vol. 86, pp. 157-196, https://arxiv.org/abs/1412.0376.

    https://hal.inria.fr/hal-01077311
  • 6N. Aissiouene, M.-O. Bristeau, E. Godlewski, A. Mangeney, C. Parés, J. Sainte-Marie.

    Application of a combined finite element -finite volume method to a 2D non-hydrostatic shallow water problem, in: Springer Proceedings in Mathematics & Statistics, 2017.

    https://hal.archives-ouvertes.fr/hal-01664481
  • 7M.-O. Bristeau, C. Guichard, B. DI MARTINO, J. Sainte-Marie.

    Layer-averaged Euler and Navier-Stokes equations, in: Communications in Mathematical Sciences, 2017, https://arxiv.org/abs/1509.06218. [ DOI : 10.4310/CMS.2017.v15.n5.a3 ]

    https://hal.inria.fr/hal-01202042
  • 8C. Cancès, C. Guichard.

    Numerical analysis of a robust free energy diminishing Finite Volume scheme for parabolic equations with gradient structure, in: Foundations of Computational Mathematics, 2017, vol. 17, no 6, pp. 1525-1584, https://arxiv.org/abs/1503.05649.

    https://hal.archives-ouvertes.fr/hal-01119735
  • 9R. Chen, V. Aguilera, V. Mallet, F. Cohn, D. Poulet, F. Brocheton.

    A sensitivity study of road transportation emissions at metropolitan scale, in: Journal of Earth Sciences and Geotechnical Engineering, 2017, vol. 7, no 1.

    https://hal.inria.fr/hal-01676006
  • 10R. Delannay, A. Valance, A. Mangeney, O. Roche, P. Richard.

    Granular and particle-laden flows: from laboratory experiments to field observations, in: Journal of Physics D: Applied Physics, 2017, vol. 50, no 5, 40 p. [ DOI : 10.1088/1361-6463/50/5/053001 ]

    https://hal-univ-rennes1.archives-ouvertes.fr/hal-01481019
  • 11B. Di Martino, B. Haspot, Y. Penel.

    Global stability of weak solutions for a multilayer Saint-Venant model with interactions between the layers, in: Nonlinear Analysis: Hybrid Systems, November 2017, vol. 163, pp. 177 - 200. [ DOI : 10.1016/j.na.2017.07.010 ]

    https://hal.archives-ouvertes.fr/hal-01407886
  • 12R. Eymard, P. Feron, C. Guichard.

    Family of convergent numerical schemes for the incompressible Navier-Stokes equations, in: Mathematics and Computers in Simulation, August 2017. [ DOI : 10.1016/j.matcom.2017.08.003 ]

    https://hal.archives-ouvertes.fr/hal-01382924
  • 13R. Eymard, C. Guichard.

    Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form, in: Computational and Applied Mathematics, December 2017. [ DOI : 10.1007/s40314-017-0558-2 ]

    https://hal.archives-ouvertes.fr/hal-01535147
  • 14M. Lachowicz, H. Leszczyński, M. Parisot.

    Blow-up and global existence for a kinetic equation of swarm formation, in: Mathematical Models and Methods in Applied Sciences, June 2017, vol. 27, no 6, 22 p. [ DOI : 10.1142/S0218202517400115 ]

    https://hal.inria.fr/hal-01370006
  • 15C. Lusso, F. Bouchut, A. Ern, A. Mangeney.

    A free interface model for static/flowing dynamics in thin-layer flows of granular materials with yield: simple shear simulations and comparison with experiments, in: Applied Sciences, April 2017, vol. 7, no 4, 386 p. [ DOI : 10.3390/app7040386 ]

    https://hal-upec-upem.archives-ouvertes.fr/hal-00992309
  • 16C. Lusso, A. Ern, F. Bouchut, A. Mangeney, M. Farin, O. Roche.

    Two-dimensional simulation by regularization of free surface viscoplastic flows with Drucker-Prager yield stress and application to granular collapse, in: Journal of Computational Physics, March 2017, vol. 333, pp. 387-408. [ DOI : 10.1016/j.jcp.2016.12.036 ]

    https://hal-upec-upem.archives-ouvertes.fr/hal-01133786
  • 17J. Salomon, M. J. Gander, G. Ciaramella, L. Halpern.

    Review of the Methods of Reflections, in: Oberwolfach Reports, October 2017, pp. 1-21. [ DOI : 10.14760/OWP-2017-27 ]

    https://hal.archives-ouvertes.fr/hal-01659764
  • 18J. Thorey, V. Mallet, P. Baudin.

    Online learning with the Continuous Ranked Probability Score for ensemble forecasting, in: Quarterly Journal of the Royal Meteorological Society, January 2017, vol. 143, no 702, pp. 521 - 529. [ DOI : 10.1002/qj.2940 ]

    https://hal.inria.fr/hal-01676007
  • 19R. Ventura, V. Mallet, V. Issarny, P.-G. Raverdy, F. Rebhi.

    Evaluation and calibration of mobile phones for noise monitoring application, in: Journal of the Acoustical Society of America, November 2017, vol. 142, no 5, pp. 3084 - 3093. [ DOI : 10.1121/1.5009448 ]

    https://hal.inria.fr/hal-01676004

International Conferences with Proceedings

  • 20J. Droniou, R. Eymard, T. Gallouët, C. Guichard, R. Herbin.

    An error estimate for the approximation of linear parabolic equations by the Gradient Discretization Method, in: FVCA 2017 - International Conference on Finite Volumes for Complex Applications VIII, Lille, France, Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, 2017.

    https://hal.archives-ouvertes.fr/hal-01442921
  • 21R. Eymard, C. Guichard.

    DGM, an item of GDM, in: FVCA 2017 - International Conference on Finite Volumes for Complex Applications VIII, Lille, France, Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, 2017.

    https://hal.archives-ouvertes.fr/hal-01442922
  • 22V. Raphaël, V. Mallet, V. Issarny, P.-G. Raverdy, F. Rebhi.

    Estimation of urban noise with the assimilation of observations crowdsensed by the mobile application Ambiciti, in: INTER-NOISE 2017 - the 46th International Congress and Exposition on Noise Control Engineering Taming Noise and Moving Quiet, Hong Kong, China, August 2017.

    https://hal.inria.fr/hal-01676010

Books or Proceedings Editing

  • 23E. Audusse, S. Dellacherie, D. M. Hieu, P. Omnes, Y. Penel (editors)

    Godunov type scheme for the linear wave equation with Coriolis source term, LMLFN 2015 – Low Velocity Flows – Application to Low Mach and Low Froude regimes, EDP Sciences, November 2017, vol. 58. [ DOI : 10.1051/proc/201758001 ]

    https://hal.archives-ouvertes.fr/hal-01254888

Other Publications

  • 24N. Aguillon, E. Audusse, E. Godlewski, M. Parisot.

    Analysis of the Riemann Problem for a shallow water model with two velocities, October 2017, working paper or preprint.

    https://hal.inria.fr/hal-01618722
  • 25S. Allgeyer, M.-O. Bristeau, D. Froger, R. Hamouda, A. Mangeney, J. Sainte-Marie, F. Souillé, M. Vallée.

    Numerical approximation of the 3d hydrostatic Navier-Stokes system with free surface, September 2017, working paper or preprint.

    https://hal.inria.fr/hal-01393147
  • 26E. Audusse, M.-O. Bristeau, J. Sainte-Marie.

    Kinetic entropy for the layer-averaged hydrostatic Navier-Stokes equations, September 2017, working paper or preprint.

    https://hal.inria.fr/hal-01583511
  • 27E. Audusse, D. Minh Hieu, P. Omnes, Y. Penel.

    Analysis of modified Godunov type schemes for the two-dimensional linear wave equation with Coriolis source term on cartesian meshes, October 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01618753
  • 28P. Aumond, A. CAN, V. Mallet, B. DE COENSEL, C. Ribeiro, D. Botteldooren, C. Lavandier.

    Acoustic mapping based on measurements: space and time interpolation, 2017, In: Proceedings of INTER-NOISE 2017, 46th International Congress and Exposition on Noise Control Engineering. 2017, pp. 5, 707–5, 718.

    https://hal.inria.fr/hal-01676009
  • 29N. Aïssiouene, M.-O. Bristeau, E. Godlewski, A. Mangeney, C. Parés, J. Sainte-Marie.

    A two-dimensional method for a dispersive shallow water model, November 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01632522
  • 30E. D. Fernandez-Nieto, M. Parisot, Y. Penel, J. Sainte-Marie.

    A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows, May 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01324012
  • 31P. Laurent, G. Legendre, J. Salomon.

    On the method of reflections, February 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01439871
  • 32M. Parisot.

    Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow, Part I, September 2017, working paper or preprint.

    https://hal.inria.fr/hal-01242128
References in notes
  • 33N. Aissiouene.

    Numerical analysis and discrete approximation of a dispersive shallow water model, Univ. Pierre et Marie Curie, Paris 6, 2016.
  • 34E. Audusse.

    A multilayer Saint-Venant model : Derivation and numerical validation, in: Discrete Contin. Dyn. Syst. Ser. B, 2005, vol. 5, no 2, pp. 189-214.
  • 35N. Aïssiouene, M.-O. Bristeau, E. Godlewski, J. Sainte-Marie.

    A combined finite volume-finite element scheme for a dispersive shallow water system, in: Networks & Heterogeneous Media, 2016, vol. 11, no 1.
  • 36F. Bouchut, V. Zeitlin.

    A robust well-balanced scheme for multi-layer shallow water equations, in: Discrete Contin. Dyn. Syst. Ser. B, 2010, vol. 13, pp. 739-758.
  • 37M. Castro, J. García-Rodríguez, J. González-Vida, J. Macías, C. Parés, M. Vázquez-Cendón.

    Numerical simulation of two-layer shallow water flows through channels with irregular geometry, in: J. Comput. Phys., 2004, vol. 195, no 1, pp. 202–235.
  • 38E. Godlewski, M. Parisot, J. Sainte-Marie, F. Wahl.

    Congested shallow water type model: roof modelling in free surface flow, September 2016, working paper or preprint.

    https://hal.inria.fr/hal-01368075
  • 39N. Goutal, M. Parisot, F. Zaoui.

    A 2D reconstruction for the transverse coupling of shallow water models, in: Int. J. Numer. Methods Fluids, 2014, vol. 75, no 11, pp. 775–799.
  • 40A. Green, P. Naghdi.

    A derivation of equations for wave propagation in water of variable depth, in: J. Fluid Mech., 1976, vol. 78, no 2, pp. 237–246.