Bibliography
Major publications by the team in recent years
-
1S. Dellacherie, J. Jung, P. Omnes, P.-A. Raviart.
Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system, in: Mathematical Models and Methods in Applied Sciences, November 2016. [ DOI : 10.1142/S0218202516500603 ]
https://hal.archives-ouvertes.fr/hal-00776629 -
2J.-L. Florenciano, P. Bruel.
LES fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls, in: Aerospace Science and Technology, 2016, vol. 53, 13 p. [ DOI : 10.1016/j.ast.2016.03.004 ]
https://hal.inria.fr/hal-01353952 -
3E. Franquet, V. Perrier.
Runge-Kutta discontinuous Galerkin method for interface flows with a maximum preserving limiter, in: Computers and Fluids, March 2012, vol. 65, pp. 2-7. [ DOI : 10.1016/j.compfluid.2012.02.021 ]
https://hal.inria.fr/hal-00739446 -
4E. Franquet, V. Perrier.
Runge-Kutta discontinuous Galerkin method for the approximation of Baer and Nunziato type multiphase models, in: Journal of Computational Physics, February 2012, vol. 231, no 11, pp. 4096-4141. [ DOI : 10.1016/j.jcp.2012.02.002 ]
https://hal.inria.fr/hal-00684427 -
5J.-M. Hérard, J. Jung.
An interface condition to compute compressible flows in variable cross section ducts, in: Comptes Rendus Mathématique, February 2016. [ DOI : 10.1016/j.crma.2015.10.026 ]
https://hal.inria.fr/hal-01233251 -
6R. Manceau.
Recent progress in the development of the Elliptic Blending Reynolds-stress model, in: Int. J. Heat Fluid Fl., 2015, vol. 51, pp. 195-220.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.09.002 -
7Y. Moguen, P. Bruel, E. Dick.
Semi-implicit characteristic-based boundary treatment for acoustics in low Mach number flows, in: Journal of Computational Physics, 2013, vol. 255, pp. 339-361. [ DOI : 10.1016/j.jcp.2013.08.019 ]
http://hal.inria.fr/hal-00929713 -
8Y. Moguen, S. Delmas, V. Perrier, P. Bruel, E. Dick.
Godunov-type schemes with an inertia term for unsteady full Mach number range flow calculations, in: Journal of Computational Physics, January 2015, vol. 281, 35 p. [ DOI : 10.1016/j.jcp.2014.10.041 ]
https://hal.inria.fr/hal-01096422 -
9B. de Laage de Meux, B. Audebert, R. Manceau, R. Perrin.
Anisotropic Linear Forcing for synthetic turbulence generation in LES and hybrid RANS/LES modeling, in: Phys. Fluids, 2015, vol. 27, no 035115.
http://dx.doi.org/10.1063/1.4916019
Articles in International Peer-Reviewed Journals
-
10F. Dehoux, S. Benhamadouche, R. Manceau.
An elliptic blending differential flux model for natural, mixed and forced convection, in: International Journal of Heat and Fluid Flow, 2017, vol. 63, 15 p. [ DOI : 10.1016/j.ijheatfluidflow.2016.09.003 ]
https://hal.inria.fr/hal-01391900 -
11M. Essadki, J. Jung, A. Larat, M. Pelletier, V. Perrier.
A task-driven implementation of a simple numerical solver for hyperbolic conservation laws, in: ESAIM: Proceedings and Surveys, January 2017, vol. 2017, pp. 1 - 10, https://arxiv.org/abs/1701.05431.
https://hal.archives-ouvertes.fr/hal-01439322
Invited Conferences
-
12R. Manceau.
Couplage calcul-expérience, in: Journée scientifique à la mémoire de Joël Delville, Poitiers, Poitiers, France, April 2017.
https://hal.inria.fr/hal-01660970 -
13V. Perrier.
Low Mach flows: non-stationary and high order aspects, in: Workshop "Schémas numériques pour les écoulements à faible nombre de Mach", Toulouse, France, November 2017.
https://hal.inria.fr/hal-01668921
International Conferences with Proceedings
-
14A. Kacem, Y. Le Guer, K. El Omari, P. Bruel.
Experimental investigation of planar sheet flowing under gravity, in: Multiphase Flow 2017 - 9th International Conference on Computational and Experimental Methods in Multiphase and Complex Flow, Tallin, Estonia, WIT Transactions on Engineering Sciences, Wessex Institute and University of New Mexico, June 2017, vol. 115, pp. 97-107. [ DOI : 10.2495/MPF170111 ]
https://hal.inria.fr/hal-01651947
Conferences without Proceedings
-
15J.-F. Wald, S. Benhamadouche, G. Mangeon, R. Manceau.
Towards adaptive wall treatment for second order thermal RANS models in an industrial context, in: Séminaire I3P, Paris, France, September 2017.
https://hal.inria.fr/hal-01661246
Other Publications
-
16P. Bruel.
The simulation of low Mach flows: from the AUSM-IT flux scheme to ATCBC boundary conditions, March 2017, Seminar - Universidad Nacional de Córdoba - Argentina.
https://hal.inria.fr/hal-01651971 -
17V. Perrier.
A task-driven implementation of a simple numerical solver for hyperbolic conservation laws, February 2017, NASA LaRC HPC Seminar.
https://hal.inria.fr/hal-01668927
-
18D. N. Arnold.
An interior penalty finite element method with discontinuous elements, in: SIAM journal on numerical analysis, 1982, vol. 19, no 4, pp. 742–760. -
19D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini.
Unified analysis of discontinuous Galerkin methods for elliptic problems, in: SIAM journal on numerical analysis, 2002, vol. 39, no 5, pp. 1749–1779. -
20C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures, in: Concurr. Comput. : Pract. Exper., February 2011, vol. 23, no 2, pp. 187–198.
http://dx.doi.org/10.1002/cpe.1631 -
21F. Bassi, L. Botti, A. Colombo, D. D. Pietro, P. Tesini.
On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, in: Journal of Computational Physics, 2012, vol. 231, no 1, pp. 45 - 65. [ DOI : 10.1016/j.jcp.2011.08.018 ]
http://www.sciencedirect.com/science/article/pii/S0021999111005055 -
22F. Bassi, A. Crivellini, S. Rebay, M. Savini.
Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-omega turbulence model equations, in: Computers & Fluids, 2005, vol. 34, no 4-5, pp. 507-540. -
23F. Bassi, S. Rebay.
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, in: J. Comput. Phys., 1997, vol. 131, no 2, pp. 267–279.
http://dx.doi.org/10.1006/jcph.1996.5572 -
24F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini.
A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in: Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997, pp. 99–109. -
25B. Cockburn, S. Hou, C.-W. Shu.
The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, in: Math. Comp., 1990, vol. 54, no 190, pp. 545–581.
http://dx.doi.org/10.2307/2008501 -
26B. Cockburn, S. Y. Lin, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, in: J. Comput. Phys., 1989, vol. 84, no 1, pp. 90–113. -
27B. Cockburn, C.-W. Shu.
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, in: Math. Comp., 1989, vol. 52, no 186, pp. 411–435.
http://dx.doi.org/10.2307/2008474 -
28B. Cockburn, C.-W. Shu.
The Runge-Kutta local projection -discontinuous-Galerkin finite element method for scalar conservation laws, in: RAIRO Modél. Math. Anal. Numér., 1991, vol. 25, no 3, pp. 337–361. -
29B. Cockburn, C.-W. Shu.
The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, in: J. Comput. Phys., 1998, vol. 141, no 2, pp. 199–224.
http://dx.doi.org/10.1006/jcph.1998.5892 -
30S. S. Colis.
Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program, Center for Turbulence Research, 2002. -
31M. Feistauer, V. Kučera.
On a robust discontinuous Galerkin technique for the solution of compressible flow, in: J. Comput. Phys., 2007, vol. 224, no 1, pp. 208–221.
http://dx.doi.org/10.1016/j.jcp.2007.01.035 -
32U. Frisch.
Turbulence: The Legacy of AN Kolmogorov, Cambridge University Press, 1995. -
33M. Giles.
Non-Reflecting Boundary Conditions for Euler Equation Calculation, in: The American Institute of Aeronautics and Astronautics Journal, 1990, vol. 42, no 12. -
34R. Hartmann, P. Houston.
Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. I. Method formulation, in: Int. J. Numer. Anal. Model., 2006, vol. 3, no 1, pp. 1–20. -
35A. Jameson, M. Fatica.
Using Computational Fluid Dynamics for Aerodynamics, in: National Research Council Workshop on "The Future of Supercomputing", 2003. -
36C. Johnson, A. Szepessy, P. Hansbo.
On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, in: Math. Comp., 1990, vol. 54, no 189, pp. 107–129.
http://dx.doi.org/10.2307/2008684 -
37A. Klöckner, T. Warburton, J. Bridge, J. Hesthaven.
Nodal discontinuous Galerkin methods on graphics processors, in: Journal of Computational Physics, 2009, vol. 228, no 21, pp. 7863 - 7882. [ DOI : 10.1016/j.jcp.2009.06.041 ]
http://www.sciencedirect.com/science/article/pii/S0021999109003647 -
38D. Knoll, D. Keyes.
Jacobian-free Newton-Krylov methods: a survey of approaches and applications, in: Journal of Computational Physics, 2004, vol. 193, no 2, pp. 357 - 397. [ DOI : 10.1016/j.jcp.2003.08.010 ]
http://www.sciencedirect.com/science/article/pii/S0021999103004340 -
39P. Lesaint, P.-A. Raviart.
On a finite element method for solving the neutron transport equation, in: Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. Publication No. 33. -
40F. Lörcher, G. Gassner, C.-D. Munz.
An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, in: J. Comput. Phys., 2008, vol. 227, no 11, pp. 5649–5670.
http://dx.doi.org/10.1016/j.jcp.2008.02.015 -
41A. C. Muresan, Y. Notay.
Analysis of Aggregation-Based Multigrid, in: SIAM J. Sci. Comput., March 2008, vol. 30, no 2, pp. 1082–1103.
http://dx.doi.org/10.1137/060678397 -
42T. Poinsot, S. Lele.
Boundary conditions for direct simulations of compressible viscous flows, in: Journal of Computational Physics, 1992, vol. 101, pp. 104-129. -
43W. Reed, T. Hill.
Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, 1973, no LA-UR-73-479. -
44H. Sutter.
The free lunch is over: A fundamental turn toward concurrency in software, in: Dr. Dobbâs Journal, 2005. -
45K. W. Thompson.
Time-dependent boundary conditions for hyperbolic systems, {II}, in: Journal of Computational Physics, 1990, vol. 89, no 2, pp. 439 - 461. [ DOI : 10.1016/0021-9991(90)90152-Q ]
http://www.sciencedirect.com/science/article/pii/002199919090152Q -
46I. Toulopoulos, J. A. Ekaterinaris.
Artificial boundary conditions for the numerical solution of the Euler equations by the discontinuous galerkin method, in: Journal of Computational Physics, 2011, vol. 230, no 15, pp. 5974 - 5995. [ DOI : 10.1016/j.jcp.2011.04.008 ]
http://www.sciencedirect.com/science/article/pii/S0021999111002324 -
47P. Wesseling.
An introduction to multigrid methods, Pure and applied mathematics, J. Wiley, Chichester, New York, 1992.
http://opac.inria.fr/record=b1088946 -
48I. Yavneh.
Why Multigrid Methods Are So Efficient, in: Computing in Science and Engg., November 2006, vol. 8, no 6, pp. 12–22.
http://dx.doi.org/10.1109/MCSE.2006.125 -
49J. van der Vegt, S. Rhebergen.
hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, in: Journal of Computational Physics, 2012, vol. 231, no 22, pp. 7537 - 7563. [ DOI : 10.1016/j.jcp.2012.05.038 ]
http://www.sciencedirect.com/science/article/pii/S0021999112003129