Bibliography
Publications of the year
Articles in International Peer-Reviewed Journals
-
1U. Boscain, R. Neel, L. Rizzi.
Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry, in: Advances in Mathematics, July 2017, https://arxiv.org/abs/1503.00725. [ DOI : 10.1016/j.aim.2017.04.024 ]
https://hal.archives-ouvertes.fr/hal-01122735 -
2Y. Chitour, G. Mazanti, M. Sigalotti.
Persistently damped transport on a network of circles, in: Transactions of the American Mathematical Society, June 2017, vol. 369, no 6, pp. 3841-3881, https://arxiv.org/abs/1406.0731. [ DOI : 10.1090/tran/6778 ]
https://hal.inria.fr/hal-00999743 -
3G. Mazanti.
Relative controllability of linear difference equations, in: SIAM Journal on Control and Optimization, 2017, vol. 55, no 5, pp. 3132–3153, https://arxiv.org/abs/1604.08663. [ DOI : 10.1137/16M1073157 ]
https://hal.archives-ouvertes.fr/hal-01309166
Other Publications
-
4D. Barilari, L. Rizzi.
On Jacobi fields and canonical connection in sub-Riemannian geometry, March 2017, https://arxiv.org/abs/1506.01827 - Final version, to appear on Archivum Mathematicum.
https://hal.archives-ouvertes.fr/hal-01160902 -
5M. Caponigro, M. Sigalotti.
Exact controllability in projections of the bilinear Schrödinger equation, 2017, working paper or preprint.
https://hal.inria.fr/hal-01509971 -
6L. Rizzi, U. Serres.
On the cut locus of free, step two Carnot groups, January 2017, https://arxiv.org/abs/1610.01596 - 13 pages. To appear on Proceedings of the AMS.
https://hal.archives-ouvertes.fr/hal-01377408
-
7A. A. Agrachev, T. Chambrion.
An estimation of the controllability time for single-input systems on compact Lie groups, in: ESAIM Control Optim. Calc. Var., 2006, vol. 12, no 3, pp. 409–441. -
8A. A. Agrachev, D. Liberzon.
Lie-algebraic stability criteria for switched systems, in: SIAM J. Control Optim., 2001, vol. 40, no 1, pp. 253–269.
http://dx.doi.org/10.1137/S0363012999365704 -
9A. A. Agrachev, Y. L. Sachkov.
Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II. -
10A. A. Agrachev, A. V. Sarychev.
Navier-Stokes equations: controllability by means of low modes forcing, in: J. Math. Fluid Mech., 2005, vol. 7, no 1, pp. 108–152.
http://dx.doi.org/10.1007/s00021-004-0110-1 -
11F. Albertini, D. D'Alessandro.
Notions of controllability for bilinear multilevel quantum systems, in: IEEE Trans. Automat. Control, 2003, vol. 48, no 8, pp. 1399–1403. -
12C. Altafini.
Controllability properties for finite dimensional quantum Markovian master equations, in: J. Math. Phys., 2003, vol. 44, no 6, pp. 2357–2372. -
13L. Ambrosio, P. Tilli.
Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004, vol. 25, viii+133 p. -
14G. Arechavaleta, J.-P. Laumond, H. Hicheur, A. Berthoz.
An optimality principle governing human locomotion, in: IEEE Trans. on Robotics, 2008, vol. 24, no 1. -
15L. Baudouin.
A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics, in: Port. Math. (N.S.), 2006, vol. 63, no 3, pp. 293–325. -
16L. Baudouin, O. Kavian, J.-P. Puel.
Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, in: J. Differential Equations, 2005, vol. 216, no 1, pp. 188–222. -
17L. Baudouin, J. Salomon.
Constructive solution of a bilinear optimal control problem for a Schrödinger equation, in: Systems Control Lett., 2008, vol. 57, no 6, pp. 453–464.
http://dx.doi.org/10.1016/j.sysconle.2007.11.002 -
18K. Beauchard.
Local controllability of a 1-D Schrödinger equation, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 7, pp. 851–956. -
19K. Beauchard, J.-M. Coron.
Controllability of a quantum particle in a moving potential well, in: J. Funct. Anal., 2006, vol. 232, no 2, pp. 328–389. -
20M. Belhadj, J. Salomon, G. Turinici.
A stable toolkit method in quantum control, in: J. Phys. A, 2008, vol. 41, no 36, 362001, 10 p.
http://dx.doi.org/10.1088/1751-8113/41/36/362001 -
21F. Blanchini.
Nonquadratic Lyapunov functions for robust control, in: Automatica J. IFAC, 1995, vol. 31, no 3, pp. 451–461.
http://dx.doi.org/10.1016/0005-1098(94)00133-4 -
22F. Blanchini, S. Miani.
A new class of universal Lyapunov functions for the control of uncertain linear systems, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 3, pp. 641–647.
http://dx.doi.org/10.1109/9.751368 -
23A. M. Bloch, R. W. Brockett, C. Rangan.
Finite Controllability of Infinite-Dimensional Quantum Systems, in: IEEE Trans. Automat. Control, 2010. -
24V. D. Blondel, J. Theys, A. A. Vladimirov.
An elementary counterexample to the finiteness conjecture, in: SIAM J. Matrix Anal. Appl., 2003, vol. 24, no 4, pp. 963–970.
http://dx.doi.org/10.1137/S0895479801397846 -
25A. Bonfiglioli, E. Lanconelli, F. Uguzzoni.
Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, xxvi+800 p. -
26B. Bonnard, D. Sugny.
Time-minimal control of dissipative two-level quantum systems: the integrable case, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1289–1308.
http://dx.doi.org/10.1137/080717043 -
27A. Borzì, E. Decker.
Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation, in: J. Comput. Appl. Math., 2006, vol. 193, no 1, pp. 65–88. -
28A. Borzì, U. Hohenester.
Multigrid optimization schemes for solving Bose-Einstein condensate control problems, in: SIAM J. Sci. Comput., 2008, vol. 30, no 1, pp. 441–462.
http://dx.doi.org/10.1137/070686135 -
29C. Brif, R. Chakrabarti, H. Rabitz.
Control of quantum phenomena: Past, present, and future, Advances in Chemical Physics, S. A. Rice (ed), Wiley, New York, 2010. -
30F. Bullo, A. D. Lewis.
Geometric control of mechanical systems, Texts in Applied Mathematics, Springer-Verlag, New York, 2005, vol. 49, xxiv+726 p. -
31R. Cabrera, H. Rabitz.
The landscape of quantum transitions driven by single-qubit unitary transformations with implications for entanglement, in: J. Phys. A, 2009, vol. 42, no 27, 275303, 9 p.
http://dx.doi.org/10.1088/1751-8113/42/27/275303 -
32G. Citti, A. Sarti.
A cortical based model of perceptual completion in the roto-translation space, in: J. Math. Imaging Vision, 2006, vol. 24, no 3, pp. 307–326.
http://dx.doi.org/10.1007/s10851-005-3630-2 -
33J.-M. Coron.
Control and nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007, vol. 136, xiv+426 p. -
34W. P. Dayawansa, C. F. Martin.
A converse Lyapunov theorem for a class of dynamical systems which undergo switching, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 4, pp. 751–760.
http://dx.doi.org/10.1109/9.754812 -
35L. El Ghaoui, S.-I. Niculescu.
Robust decision problems in engineering: a linear matrix inequality approach, in: Advances in linear matrix inequality methods in control, Philadelphia, PA, Adv. Des. Control, SIAM, 2000, vol. 2, pp. 3–37. -
36S. Ervedoza, J.-P. Puel.
Approximate controllability for a system of Schrödinger equations modeling a single trapped ion, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, pp. 2111–2136. -
37M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and defect of non-linear systems: introductory theory and examples, in: Internat. J. Control, 1995, vol. 61, no 6, pp. 1327–1361.
http://dx.doi.org/10.1080/00207179508921959 -
38B. Franchi, R. Serapioni, F. Serra Cassano.
Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, in: Comm. Anal. Geom., 2003, vol. 11, no 5, pp. 909–944. -
39M. Gugat.
Optimal switching boundary control of a string to rest in finite time, in: ZAMM Z. Angew. Math. Mech., 2008, vol. 88, no 4, pp. 283–305. -
40J. Hespanha, S. Morse.
Stability of switched systems with average dwell-time, in: Proceedings of the 38th IEEE Conference on Decision and Control, CDC 1999, Phoenix, AZ, USA, 1999, pp. 2655–2660. -
41D. Hubel, T. Wiesel.
Brain and Visual Perception: The Story of a 25-Year Collaboration, Oxford University Press, Oxford, 2004. -
42R. Illner, H. Lange, H. Teismann.
Limitations on the control of Schrödinger equations, in: ESAIM Control Optim. Calc. Var., 2006, vol. 12, no 4, pp. 615–635.
http://dx.doi.org/10.1051/cocv:2006014 -
43A. Isidori.
Nonlinear control systems, Communications and Control Engineering Series, Second, Springer-Verlag, Berlin, 1989, xii+479 p, An introduction. -
44K. Ito, K. Kunisch.
Optimal bilinear control of an abstract Schrödinger equation, in: SIAM J. Control Optim., 2007, vol. 46, no 1, pp. 274–287. -
45K. Ito, K. Kunisch.
Asymptotic properties of feedback solutions for a class of quantum control problems, in: SIAM J. Control Optim., 2009, vol. 48, no 4, pp. 2323–2343.
http://dx.doi.org/10.1137/080720784 -
46R. Kalman.
When is a linear control system optimal?, in: ASME Transactions, Journal of Basic Engineering, 1964, vol. 86, pp. 51–60. -
47N. Khaneja, S. J. Glaser, R. W. Brockett.
Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer, in: Phys. Rev. A (3), 2002, vol. 65, no 3, part A, 032301, 11 p. -
48N. Khaneja, B. Luy, S. J. Glaser.
Boundary of quantum evolution under decoherence, in: Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no 23, pp. 13162–13166.
http://dx.doi.org/10.1073/pnas.2134111100 -
49V. S. Kozyakin.
Algebraic unsolvability of a problem on the absolute stability of desynchronized systems, in: Avtomat. i Telemekh., 1990, pp. 41–47. -
50G. Lafferriere, H. J. Sussmann.
A differential geometry approach to motion planning, in: Nonholonomic Motion Planning (Z. Li and J. F. Canny, editors), Kluwer Academic Publishers, 1993, pp. 235-270. -
51J.-S. Li, N. Khaneja.
Ensemble control of Bloch equations, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 3, pp. 528–536.
http://dx.doi.org/10.1109/TAC.2009.2012983 -
52D. Liberzon, J. P. Hespanha, A. S. Morse.
Stability of switched systems: a Lie-algebraic condition, in: Systems Control Lett., 1999, vol. 37, no 3, pp. 117–122.
http://dx.doi.org/10.1016/S0167-6911(99)00012-2 -
53D. Liberzon.
Switching in systems and control, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2003, xiv+233 p. -
54H. Lin, P. J. Antsaklis.
Stability and stabilizability of switched linear systems: a survey of recent results, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 2, pp. 308–322.
http://dx.doi.org/10.1109/TAC.2008.2012009 -
55Y. Lin, E. D. Sontag, Y. Wang.
A smooth converse Lyapunov theorem for robust stability, in: SIAM J. Control Optim., 1996, vol. 34, no 1, pp. 124–160.
http://dx.doi.org/10.1137/S0363012993259981 -
56W. Liu.
Averaging theorems for highly oscillatory differential equations and iterated Lie brackets, in: SIAM J. Control Optim., 1997, vol. 35, no 6, pp. 1989–2020.
http://dx.doi.org/10.1137/S0363012994268667 -
57Y. Maday, J. Salomon, G. Turinici.
Monotonic parareal control for quantum systems, in: SIAM J. Numer. Anal., 2007, vol. 45, no 6, pp. 2468–2482.
http://dx.doi.org/10.1137/050647086 -
58A. N. Michel, Y. Sun, A. P. Molchanov.
Stability analysis of discountinuous dynamical systems determined by semigroups, in: IEEE Trans. Automat. Control, 2005, vol. 50, no 9, pp. 1277–1290.
http://dx.doi.org/10.1109/TAC.2005.854582 -
59M. Mirrahimi.
Lyapunov control of a particle in a finite quantum potential well, in: Proceedings of the 45th IEEE Conference on Decision and Control, 2006. -
60M. Mirrahimi, P. Rouchon.
Controllability of quantum harmonic oscillators, in: IEEE Trans. Automat. Control, 2004, vol. 49, no 5, pp. 745–747. -
61A. P. Molchanov, Y. S. Pyatnitskiy.
Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, in: Systems Control Lett., 1989, vol. 13, no 1, pp. 59–64.
http://dx.doi.org/10.1016/0167-6911(89)90021-2 -
62R. Montgomery.
A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p. -
63R. M. Murray, S. S. Sastry.
Nonholonomic motion planning: steering using sinusoids, in: IEEE Trans. Automat. Control, 1993, vol. 38, no 5, pp. 700–716.
http://dx.doi.org/10.1109/9.277235 -
64V. Nersesyan.
Growth of Sobolev norms and controllability of the Schrödinger equation, in: Comm. Math. Phys., 2009, vol. 290, no 1, pp. 371–387. -
65A. Y. Ng, S. Russell.
Algorithms for Inverse Reinforcement Learning, in: Proc. 17th International Conf. on Machine Learning, 2000, pp. 663–670. -
66J. Petitot.
Neurogéomètrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles, Les Éditions de l'École Polythechnique, 2008. -
67J. Petitot, Y. Tondut.
Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, in: Math. Inform. Sci. Humaines, 1999, no 145, pp. 5–101. -
68H. Rabitz, H. de Vivie-Riedle, R. Motzkus, K. Kompa.
Wither the future of controlling quantum phenomena?, in: SCIENCE, 2000, vol. 288, pp. 824–828. -
69D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, R. Fazio.
Decoherence by engineered quantum baths, in: J. Phys. A, 2007, vol. 40, no 28, pp. 8033–8040.
http://dx.doi.org/10.1088/1751-8113/40/28/S12 -
70P. Rouchon.
Control of a quantum particle in a moving potential well, in: Lagrangian and Hamiltonian methods for nonlinear control 2003, Laxenburg, IFAC, 2003, pp. 287–290. -
71A. Sasane.
Stability of switching infinite-dimensional systems, in: Automatica J. IFAC, 2005, vol. 41, no 1, pp. 75–78.
http://dx.doi.org/10.1016/j.automatica.2004.07.013 -
72A. Saurabh, M. H. Falk, M. B. Alexandre.
Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions, in: Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008, December 9-11, 2008, Cancún, Mexico, 2008, pp. 2081–2086. -
73M. Shapiro, P. Brumer.
Principles of the Quantum Control of Molecular Processes, Principles of the Quantum Control of Molecular Processes, pp. 250. Wiley-VCH, February 2003. -
74R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King.
Stability criteria for switched and hybrid systems, in: SIAM Rev., 2007, vol. 49, no 4, pp. 545–592.
http://dx.doi.org/10.1137/05063516X -
75H. J. Sussmann.
A continuation method for nonholonomic path finding, in: Proceedings of the 32th IEEE Conference on Decision and Control, CDC 1993, Piscataway, NJ, USA, 1993, pp. 2718–2723. -
76E. Todorov.
12, in: Optimal control theory, Bayesian Brain: Probabilistic Approaches to Neural Coding, Doya K (ed), 2006, pp. 269–298. -
77G. Turinici.
On the controllability of bilinear quantum systems, in: Mathematical models and methods for ab initio Quantum Chemistry, M. Defranceschi, C. Le Bris (editors), Lecture Notes in Chemistry, Springer, 2000, vol. 74. -
78L. Yatsenko, S. Guérin, H. Jauslin.
Topology of adiabatic passage, in: Phys. Rev. A, 2002, vol. 65, 043407, 7 p. -
79E. Zuazua.
Switching controls, in: Journal of the European Mathematical Society, 2011, vol. 13, no 1, pp. 85–117.