EN FR
EN FR


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 1Z. Badreddine.

    Mass transportation in sub-Riemannian structures admitting singular minimizing geodesics, Université de Bourgogne Franche-Comté, December 2017.

    http://www.theses.fr/s121592

Articles in International Peer-Reviewed Journals

  • 2P. Bettiol, B. Bonnard, A. Nolot, J. Rouot.

    Sub-Riemannian geometry and swimming at low Reynolds number: the Copepod case, in: ESAIM: Control, Optimisation and Calculus of Variations, 2018. [ DOI : 10.1051/cocv/2017071 ]

    https://hal.inria.fr/hal-01442880
  • 3T. Chambrion, L. Giraldi, A. Munnier.

    Optimal strokes for driftless swimmers: A general geometric approach, in: ESAIM: Control, Optimisation and Calculus of Variations, February 2017, https://arxiv.org/abs/1404.0776. [ DOI : 10.1051/cocv/2017012 ]

    https://hal.archives-ouvertes.fr/hal-00969259
  • 4C. Delhon, C. Moreau, F. Magnin, L. Howarth.

    Rotten posts and selected fuel: Charcoal analysis of the first Middle Neolithic village identified in Provence (Cazan-Le Clos du Moulin, Vernegues, Bouches-du-Rhone, South of France), in: Quaternary International, 2017, vol. 458, pp. 1-13. [ DOI : 10.1016/j.quaint.2016.11.001 ]

    https://hal.archives-ouvertes.fr/hal-01681617
  • 5L. Giraldi, P. Lissy, C. Moreau, J.-B. Pomet.

    Addendum to "Local Controllability of the Two-Link Magneto-Elastic Micro-Swimmer", in: IEEE Transactions on Automatic Control, 2018, https://arxiv.org/abs/1707.01298, forthcoming. [ DOI : 10.1109/TAC.2017.2764422 ]

    https://hal.inria.fr/hal-01553296
  • 6L. Giraldi, J.-B. Pomet.

    Local Controllability of the Two-Link Magneto-Elastic Micro-Swimmer, in: IEEE Transactions on Automatic Control, 2017, vol. 62, pp. 2512-2518, https://arxiv.org/abs/1506.05918. [ DOI : 10.1109/TAC.2016.2600158 ]

    https://hal.archives-ouvertes.fr/hal-01145537

International Conferences with Proceedings

  • 7F. Alouges, A. Desimone, L. Giraldi, M. Zoppello.

    Purcell magneto-elastic swimmer controlled by an external magnetic field, in: IFAC 2017 World Congress, Touluse, France, July 2017, vol. 50, no 1, pp. 4120-4125, https://arxiv.org/abs/1611.02020. [ DOI : 10.1016/j.ifacol.2017.08.798 ]

    https://hal.archives-ouvertes.fr/hal-01393314
  • 8J.-B. Caillau, T. Dargent, F. Nicolau.

    Approximation by filtering in optimal control and applications, in: IFAC 2017 World Congress. The 20th World Congress of the International Federation of Automatic Control, Toulouse, France, D. Dochain, D. Henrion, D. Peaucelle (editors), IFAC-PapersOnLine, Elsevier, July 2017, vol. 50, no 1, pp. 1649-1654. [ DOI : 10.1016/j.ifacol.2017.08.332 ]

    https://hal.archives-ouvertes.fr/hal-01588465
  • 9T. Dargent, F. Nicolau, J.-B. Pomet.

    Periodic averaging with a second order integral error, in: IFAC 2017 World Congress, Toulouse, France, D. Dochain (editor), July 2017, vol. 50, no 1, pp. 2892-2897. [ DOI : 10.1016/j.ifacol.2017.08.645 ]

    https://hal.archives-ouvertes.fr/hal-01351613
  • 10J. Rouot, P. Bettiol, B. Bonnard, A. Nolot.

    Optimal control theory and the efficiency of the swimming mechanism of the Copepod Zooplankton, in: IFAC 2017 World Congress. The 20th World Congress of the International Federation of Automatic Control, Toulouse, France, D. Dochain, D. Henrion, D. Peaucelle (editors), IFAC-PapersOnLine, Elsevier, July 2017, vol. 50, no 1, pp. 488-493. [ DOI : 10.1016/j.ifacol.2017.08.100 ]

    https://hal.inria.fr/hal-01387423

Books or Proceedings Editing

  • 11M. Bergounioux, J.-B. Caillau, T. Haberkorn, G. Peyré, C. Schnörr (editors)

    Variational methods in imaging and geometric control, Radon Series on Comput. and Applied Math., de Gruyter, January 2017, no 18.

    https://hal.archives-ouvertes.fr/hal-01315508

Other Publications

  • 12C. Aldana, J.-B. Caillau, P. Freitas.

    Maximal determinants of Schrödinger operators, December 2017, working paper or preprint.

    https://hal.inria.fr/hal-01406270
  • 13Z. Badreddine.

    Mass transportation on sub-Riemannian structures of rank two in dimension four, December 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01662926
  • 14Z. Badreddine, L. Rifford.

    Measure contraction properties for two-step sub-Riemannian structures and medium-fat Carnot groups, December 2017, https://arxiv.org/abs/1712.09900 - working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01662544
  • 15T. Bakir, B. Bonnard, S. Othman.

    Predictive control based on nonlinear observer for muscular force and fatigue model, September 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01591187
  • 16P. Bettiol, B. Bonnard, J. Rouot.

    Optimal strokes at low Reynolds number: a geometric and numerical study of Copepod and Purcell swimmers, November 2017, working paper or preprint.

    https://hal.inria.fr/hal-01326790
  • 17B. Bonnard, M. Chyba, J. Rouot.

    Geometric and Numerical Optimal Control with Application to Swimming at Low Reynolds Number and Magnetic Resonance Imaging, January 2018, working paper or preprint.

    https://hal.inria.fr/hal-01226734
  • 18B. Bonnard, O. Cots, J.-C. Faugère, A. Jacquemard, J. Rouot, M. Safey El Din, T. Verron.

    Algebraic-geometric techniques for the feedback classification and robustness of the optimal control of a pair of Bloch equations with application to Magnetic Resonance Imaging, 2017, submitted.

    https://hal.inria.fr/hal-01556806
  • 19J.-b. Caillau, M. Cerf, A. Sassi, E. Trélat, H. Zidani.

    Solving chance constrained optimal control problems in aerospace via Kernel Density Estimation, April 2017, working paper or preprint.

    https://hal.inria.fr/hal-01507063
  • 20J.-b. Caillau, J.-B. Pomet, J. Rouot.

    Metric approximation of minimum time control systems , November 2017, working paper or preprint.

    https://hal.inria.fr/hal-01672001
  • 21C. Gilet, M. Deprez, J.-B. Caillau, M. Barlaud.

    Clustering with feature selection using alternating minimization. Application to computational biology, December 2017, working paper or preprint.

    https://hal.inria.fr/hal-01671982
  • 22C. Moreau, L. Giraldi, H. Gadêlha.

    A practical and efficient asymptotic coarse-graining model for the elastohydrodynamics of slender-rods and filaments, December 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01658670
  • 23M. Orieux, J.-B. Caillau, T. Combot, J. Fejoz.

    Non-integrability of the minimum-time kepler problem , January 2018, working paper or preprint.

    https://hal.inria.fr/hal-01679261
  • 24L. Rifford, A. Moameni.

    Uniquely minimizing costs for the Kantorovitch problem, December 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01662537
  • 25L. Rifford, R. Ruggiero.

    On the stability conjecture for geodesic flows of manifold without conjugate points, December 2017, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01662529
References in notes
  • 26A. Agrachev, Y. Baryshnikov, A. Sarychev.

    Ensemble controllability by Lie algebraic methods, in: ESAIM Control Optim. and Calc. Var., 2016, vol. 22, no 4, pp. 921–938.
  • 27A. A. Agrachev, C. Biolo.

    Switching in Time-Optimal Problem: The 3D Case with 2D Control, in: J. Dyn. Control Syst., 2017.

    http://dx.doi.org/10.1007/s10883-016-9342-7
  • 28A. A. Agrachev, R. V. Gamkrelidze.

    Symplectic methods for optimization and control, in: Geometry of feedback and optimal control, Textbooks Pure Appl. Math., Marcel Dekker, 1998, vol. 207, pp. 19–77.
  • 29A. Agrachev, Y. L. Sachkov.

    Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
  • 30A. A. Agrachev, A. V. Sarychev.

    Strong minimality of abnormal geodesics for 2-distributions, in: J. Dynam. Control Systems, 1995, vol. 1, no 2, pp. 139–176.
  • 31A. A. Agrachev, A. V. Sarychev.

    Abnormal sub-Riemannian geodesics: Morse index and rigidity, in: Ann. Inst. H. Poincarré, Anal. non-linéaire, 1996, vol. 13, no 6, pp. 635-690.
  • 32V. I. Arnold.

    Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 2nd, Springer-Verlag, New York, 1989, vol. 60, xvi+508 p, Translated from Russian by K. Vogtmann and A. Weinstein.
  • 33A. Belotto Da Silva, L. Rifford.

    The Sard conjecture on Martinet surfaces, August 2016, Preprint, submitted to Duke Math. Journal.

    https://hal.archives-ouvertes.fr/hal-01411456
  • 34A. Bombrun, J.-B. Pomet.

    The averaged control system of fast oscillating control systems, in: SIAM J. Control Optim., 2013, vol. 51, no 3, pp. 2280-2305. [ DOI : 10.1137/11085791X ]

    https://hal.inria.fr/hal-00648330
  • 35B. Bonnard, J.-B. Caillau.

    Geodesic flow of the averaged controlled Kepler equation, in: Forum Mathematicum, September 2009, vol. 21, no 5, pp. 797–814.

    http://dx.doi.org/10.1515/FORUM.2009.038
  • 36B. Bonnard, J.-B. Caillau.

    Metrics with equatorial singularities on the sphere, in: Ann. Mat. Pura Appl., 2014, vol. 193, no 5, pp. 1353-1382. [ DOI : 10.1007/s10231-013-0333-y ]

    https://hal.archives-ouvertes.fr/hal-00319299
  • 37B. Bonnard, J.-B. Caillau, O. Cots.

    Energy minimization in two-level dissipative quantum control: The integrable case, in: Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Discrete Contin. Dyn. Syst., AIMS, 2011, vol. suppl., pp. 198–208.
  • 38B. Bonnard, J.-B. Caillau, L. Rifford.

    Convexity of injectivity domains on the ellipsoid of revolution: the oblate case, in: C. R. Math. Acad. Sci. Paris, 2010, vol. 348, no 23-24, pp. 1315–1318. [ DOI : 10.1016/j.crma.2010.10.036 ]

    https://hal.archives-ouvertes.fr/hal-00545768
  • 39B. Bonnard, J.-B. Caillau, R. Sinclair, M. Tanaka.

    Conjugate and cut loci of a two-sphere of revolution with application to optimal control, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 4, pp. 1081–1098.

    http://dx.doi.org/10.1016/j.anihpc.2008.03.010
  • 40B. Bonnard, J.-B. Caillau, E. Trélat.

    Second order optimality conditions in the smooth case and applications in optimal control, in: ESAIM Control Optim. and Calc. Var., 2007, vol. 13, no 2, pp. 206–236.
  • 41B. Bonnard, M. Chyba.

    Singular trajectories and their role in control theory, Mathématiques & Applications, Springer-Verlag, Berlin, 2003, vol. 40, xvi+357 p.
  • 42B. Bonnard, M. Chyba, J. Rouot, D. Takagi.

    A Numerical Approach to the Optimal Control and Efficiency of the Copepod Swimmer, in: 55th IEEE Conference on Decision and Control - CDC, Las Vegas, United States, December 2016.

    https://hal.inria.fr/hal-01286602
  • 43B. Bonnard, M. Chyba, J. Rouot, D. Takagi, R. Zou.

    Optimal Strokes : a Geometric and Numerical Study of the Copepod Swimmer, January 2016, working paper or preprint.

    https://hal.inria.fr/hal-01162407
  • 44B. Bonnard, M. Claeys, O. Cots, P. Martinon.

    Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance, in: Acta Applicandae Mathematicae, February 2015, vol. 135, no 1, pp. pp.5-45. [ DOI : 10.1007/s10440-014-9947-3 ]

    https://hal.inria.fr/hal-00867753
  • 45B. Bonnard, T. Combot, L. Jassionnesse.

    Integrability methods in the time minimal coherence transfer for Ising chains of three spins, in: Discrete Contin. Dyn. Syst. - ser. A (DCDS-A), September 2015, vol. 35, no 9, pp. 4095-4114, 20 pages. [ DOI : 10.3934/dcds.2015.35.4095 ]

    https://hal.archives-ouvertes.fr/hal-00969285
  • 46B. Bonnard, O. Cots, S. J. Glaser, M. Lapert, D. Sugny, Y. Zhang.

    Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance, in: IEEE Transactions on Automatic Control, August 2012, vol. 57, no 8, pp. 1957-1969. [ DOI : 10.1109/TAC.2012.2195859 ]

    http://hal.archives-ouvertes.fr/hal-00750032/
  • 47B. Bonnard, H. Henninger, J. Nemcova, J.-B. Pomet.

    Time Versus Energy in the Averaged Optimal Coplanar Kepler Transfer towards Circular Orbits, in: Acta Applicandae Math., 2015, vol. 135, no 2, pp. 47-80. [ DOI : 10.1007/s10440-014-9948-2 ]

    https://hal.inria.fr/hal-00918633
  • 48B. Bonnard, A. Jacquemard, M. Chyba, J. Marriott.

    Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance, in: Math. Control Relat. Fields (MCRF), 2013, vol. 3, no 4, pp. 397-432. [ DOI : 10.3934/mcrf.2013.3.397 ]

    https://hal.inria.fr/hal-00939495
  • 49B. Bonnard, I. Kupka.

    Théorie des singularités de l'application entrée-sortie et optimalité des trajectoires singulières dans le problème du temps minimal, in: Forum Math., 1993, vol. 5, pp. 111–159.
  • 50B. Bonnard, D. Sugny.

    Optimal Control with Applications in Space and Quantum Dynamics, AIMS Series on Applied Mathematics, AIMS, 2012, vol. 5.
  • 51J.-B. Caillau, O. Cots, J. Gergaud.

    Differential pathfollowing for regular optimal control problems, in: Optim. Methods Softw., 2012, vol. 27, no 2, pp. 177–196.
  • 52J.-B. Caillau, B. Daoud.

    Minimum time control of the restricted three-body problem, in: SIAM J. Control Optim., 2012, vol. 50, no 6, pp. 3178–3202.
  • 53J.-B. Caillau, A. Farrés.

    On local optima in minimum time control of the restricted three-body problem, in: Recent Advances in Celestial and Space Mechanics, Springer, April 2016, vol. Mathematics for Industry, no 23, pp. 209-302. [ DOI : 10.1007/978-3-319-27464-5 ]

    https://hal.archives-ouvertes.fr/hal-01260120
  • 54J.-B. Caillau, C. Royer.

    On the injectivity and nonfocal domains of the ellipsoid of revolution, in: Geometric Control Theory and Sub-Riemannian Geometry, G. Stefani (editor), INdAM series, Springer, 2014, vol. 5, pp. 73-85. [ DOI : 10.1007/978-3-319-02132-4 ]

    https://hal.archives-ouvertes.fr/hal-01315530
  • 55F. Chazal, D. Cohen-Steiner, Q. Mérigot.

    Geometric Inference for Probability Measures, in: Found. Comput. Math., 2011, vol. 11, pp. 733–751. [ DOI : 10.1007/s10208-011-9098-0 ]

    http://hal.inria.fr/inria-00383685
  • 56Z. Chen, J.-B. Caillau, Y. Chitour.

    L1-minimization for mechanical systems, in: SIAM J. Control Optim., May 2016, vol. 54, no 3, pp. 1245-1265. [ DOI : 10.1137/15M1013274 ]

    https://hal.archives-ouvertes.fr/hal-01136676
  • 57T. Dargent.

    Averaging technique in T_3D an integrated tool for continuous thrust optimal control in orbit transfers, in: 4th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, New Mexico, January 2014.
  • 58T. Dargent.

    Initial and final boundaries transformation when solving optimal control problem with averaging techniques and application to low-thrust orbit transfer, 2015, Preprint.
  • 59L. Faubourg, J.-B. Pomet.

    Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems, in: ESAIM Control Optim. Calc. Var., 2000, vol. 5, pp. 293-311. [ DOI : 10.1051/cocv:2000112 ]

    http://www.numdam.org/item/COCV_2000__5__293_0
  • 60A. Figalli, T. Gallouët, L. Rifford.

    On the convexity of injectivity domains on nonfocal manifolds, in: SIAM J. Math. Anal., 2015, vol. 47, no 2, pp. 969–1000. [ DOI : 10.1137/140961821 ]

    https://hal.inria.fr/hal-00968354
  • 61A. Figalli, L. Rifford, C. Villani.

    Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, in: Tohoku Math. J., 2011, vol. 63, no 4, pp. 855-876.

    http://hal.inria.fr/hal-00923320v1
  • 62M. Fliess, J. Lévine, P. Martin, P. Rouchon.

    Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples, in: Internat. J. Control, 1995, vol. 61, pp. 1327–1361.
  • 63C. Gavriel, R. Vinter.

    Second order sufficient conditions for optimal control problems with non-unique minimizers: an abstract framework, in: Appl. Math. Optim., 2014, vol. 70, no 3, pp. 411–442.

    http://dx.doi.org/10.1007/s00245-014-9245-5
  • 64A. Hindawi, J.-B. Pomet, L. Rifford.

    Mass transportation with LQ cost functions, in: Acta Appl. Math., 2011, vol. 113, pp. 215–229.
  • 65R. McCann, L. Rifford.

    The intrinsic dynamics of optimal transport, in: Journal de l'École Polytechnique - Mathématiques, 2016, vol. 3, pp. 67-98. [ DOI : 10.5802/jep.29 ]

    https://hal.archives-ouvertes.fr/hal-01336327
  • 66R. Montgomery.

    A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p.
  • 67J.-M. Morel, F. Santambrogio.

    Comparison of distances between measures, in: Appl. Math. Lett., 2007, vol. 20, no 4, pp. 427–432.

    http://dx.doi.org/10.1016/j.aml.2006.05.009
  • 68E. A. Nadaraya.

    On non-parametric estimates of density functions and regression curves, in: Theory Probab. Appl., 1965, vol. 10, no 1, pp. 186–190.
  • 69J.-B. Pomet.

    A necessary condition for dynamic equivalence, in: SIAM J. on Control and Optimization, 2009, vol. 48, pp. 925-940. [ DOI : 10.1137/080723351 ]

    http://hal.inria.fr/inria-00277531
  • 70L. S. Pontryagin, V. G. Boltjanskiĭ, R. V. Gamkrelidze, E. Mitchenko.

    Théorie mathématique des processus optimaux, Editions MIR, Moscou, 1974.
  • 71E. M. Purcell.

    Life at low Reynolds number, in: American journal of physics, 1977, vol. 45, no 1, pp. 3–11.
  • 72L. Rifford.

    Stratified semiconcave control-Lyapunov functions and the stabilization problem, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005, vol. 22, no 3, pp. 343–384.

    http://dx.doi.org/10.1016/j.anihpc.2004.07.008
  • 73J. A. Sanders, F. Verhulst, J. Murdock.

    Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, Second, Springer, New York, 2007, vol. 59, xxii+431 p.
  • 74J. A. Sanders, F. Verhulst.

    Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Springer-Verlag, 1985, vol. 56.
  • 75A. V. Sarychev.

    The index of second variation of a control system, in: Mat. Sb., 1982, vol. 41, pp. 338–401.
  • 76D. Takagi.

    Swimming with stiff legs at low Reynolds number, in: Phys. Rev. E, 2015, vol. 92, 023020 p.

    http://link.aps.org/doi/10.1103/PhysRevE.92.023020
  • 77E. Trélat, E. Zuazua.

    The turnpike property in finite-dimensional nonlinear optimal control, in: J. Differential Equations, 2015, vol. 258, no 1, pp. 81–114.

    http://dx.doi.org/10.1016/j.jde.2014.09.005
  • 78W. Van Ackooij, R. Henrion.

    Gradient formulae for nonlinear probabilistic constraints with gaussian and gaussian-like distributions, in: SIAM J. Optim., 2014, vol. 24, no 4, pp. 1864–1889.
  • 79R. Vinter.

    Optimal control, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., 2000.

    http://dx.doi.org/10.1007/978-0-8176-8086-2