EN FR
EN FR


Bibliography

Major publications by the team in recent years
  • 1R. Alicandro, M. Cicalese, A. Gloria.

    Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, in: Arch. Ration. Mech. Anal., 2011, vol. 200, no 3, pp. 881–943.
  • 2A. Gloria.

    Numerical homogenization: survey, new results, and perspectives, in: Esaim. Proc., 2012, vol. 37, Mathematical and numerical approaches for multiscale problem.
  • 3A. Gloria, F. Otto.

    An optimal variance estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Probab., 2011, vol. 39, no 3, pp. 779–856.
  • 4A. Gloria, F. Otto.

    An optimal error estimate in stochastic homogenization of discrete elliptic equations, in: Ann. Appl. Probab., 2012, vol. 22, no 1, pp. 1–28.
  • 5A. Gloria, M. Penrose.

    Random parking, Euclidean functionals, and rubber elasticity, in: Comm. Math. Physics, 2013, vol. 321, no 1, pp. 1–31.
Publications of the year

Articles in International Peer-Reviewed Journals

  • 6C. Besse, G. Dujardin, I. Lacroix-Violet.

    High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, in: SIAM Journal on Numerical Analysis, 2017, vol. 55, no 3, pp. 1387-1411, https://arxiv.org/abs/1507.00550.

    https://hal.archives-ouvertes.fr/hal-01170888
  • 7D. Bonheure, F. Hamel.

    One-dimensional symmetry and Liouville type results for the fourth order Allen-Cahn equation in ℝ N, in: Chinese Annals of Mathematics - Series B, January 2017, vol. 38, no 1, pp. 149 - 172, https://arxiv.org/abs/1508.00333 - Dedicated to Haïm Brezis with deep admiration.. [ DOI : 10.1007/s11401-016-1065-2 ]

    https://hal.archives-ouvertes.fr/hal-01182688
  • 8J.-B. Casteras, D. Bonheure, T. Gou, L. Jeanjean.

    Strong Instability of Ground States to a Fourth Order Schrödinger Equation, in: International Mathematics Research Notices, November 2017. [ DOI : 10.1093/imrn/rnx273 ]

    https://hal.archives-ouvertes.fr/hal-01665513
  • 9J.-B. Casteras, D. Bonheure, B. Noris.

    Multiple positive solutions of the stationary Keller–Segel system, in: Calculus of Variations and Partial Differential Equations, June 2017, vol. 56, no 3. [ DOI : 10.1007/s00526-017-1163-3 ]

    https://hal.archives-ouvertes.fr/hal-01665518
  • 10J.-B. Casteras, I. Holopainen, J. B. Ripoll.

    On the Asymptotic Dirichlet Problem for the Minimal Hypersurface Equation in a Hadamard Manifold, in: Potential Analysis, November 2017, vol. 47, no 4, pp. 485 - 501. [ DOI : 10.1007/s11118-017-9624-z ]

    https://hal.archives-ouvertes.fr/hal-01665516
  • 11D. Cohen, G. Dujardin.

    Exponential integrators for nonlinear Schrödinger equations with white noise dispersion, in: Stochastics and Partial Differential Equations Analysis and Computations, December 2017.

    https://hal.inria.fr/hal-01403036
  • 12S. De Bievre, P. E. Parris.

    A Rigourous Demonstration of the Validity of Boltzmann’s Scenario for the Spatial Homogenization of a Freely Expanding Gas and the Equilibration of the Kac Ring, in: Journal of Statistical Physics, August 2017, vol. 168, no 4, pp. 772 - 793. [ DOI : 10.1007/s10955-017-1834-7 ]

    https://hal.archives-ouvertes.fr/hal-01665756
  • 13P. Gonçalves, M. Jara, M. Simon.

    Second order Boltzmann-Gibbs principle for polynomial functions and applications, in: Journal of Statistical Physics, 2017, https://arxiv.org/abs/1507.06076. [ DOI : 10.1007/s10955-016-1686-6 ]

    https://hal.inria.fr/hal-01381009
  • 14M. Simon, C. Olivera.

    Non-local Conservation Law from Stochastic Particle Systems, in: Journal of Dynamics and Differential Equations, 2017, https://arxiv.org/abs/1701.04677. [ DOI : 10.1007/s10884-017-9620-4 ]

    https://hal.inria.fr/hal-01502451
  • 15G. G. L. Tiofack, S. Coulibaly, M. Taki, S. De Bièvre, G. Dujardin.

    Periodic modulations controlling Kuznetsov-Ma soliton formation in nonlinear Schrödinger equations, in: Physics Letters A, June 2017.

    https://hal.inria.fr/hal-01403028

Other Publications

References in notes
  • 33G. Agrawal.

    Nonlinear fiber optics, Academic Press, 2006.
  • 34B. Aguer, S. De Bièvre, P. Lafitte, P. E. Parris.

    Classical motion in force fields with short range correlations, in: J. Stat. Phys., 2010, vol. 138, no 4-5, pp. 780 – 814.
  • 35G. Basile, C. Bernardin, S. Olla.

    Thermal conductivity for a momentum conservative model, in: Comm. Math. Phys., 2009, vol. 287, no 1, pp. 67–98.

    http://dx.doi.org/10.1007/s00220-008-0662-7
  • 36A. Benoît, A. Gloria.

    Long-time homogenization and asymptotic ballistic transport of classical waves, in: in Annales Scientifiques de l'ENS, 2017, to appear.
  • 37A. Braides.

    Homogenization of some almost periodic functionals, in: Rend. Accad. Naz. Sci. XL, 1985, vol. 103, pp. 261–281.
  • 38P. Clavin.

    , Instabilities and Nonlinear Patterns of Overdriven Detonations in GasesH. Berestycki, Y. Pomeau (editors), Springer Netherlands, Dordrecht, 2002, pp. 49–97.

    https://doi.org/10.1007/978-94-010-0307-0_3
  • 39G. Dal Maso, L. Modica.

    Nonlinear stochastic homogenization and ergodic theory, in: J. Reine Angew. Math., 1986, vol. 368, pp. 28–42.
  • 40S. De Bièvre, P. Parris.

    Equilibration, generalized equipartition and diffusion in dynamical Lorentz gases, in: J. Stat. Phys., 2011, vol. 142, pp. 356–385.
  • 41M. Disertori, W. Kirsch, A. Klein, F. Klopp, V. Rivasseau.

    Random Schrödinger operators, Panoramas et Synthèses, Société Mathématique de France, Paris, 2008, no 25.
  • 42P. Flory.

    Statistical mechanics of chain molecules, Interscience Publishers, New York, 1969.
  • 43J.-C. Garreau, B. Vermersch.

    Spectral description of the dynamics of ultracold interacting bosons in disordered lattices, in: New. J. Phys., 2013, vol. 15, 045030.
  • 44A. Gloria, P. Le Tallec, M. Vidrascu.

    Foundation, analysis, and numerical investigation of a variational network-based model for rubber, in: Continuum Mechanics and Thermodynamics, 2014, vol. 26, no 1, pp. 1–31. [ DOI : 10.1007/s00161-012-0281-6 ]

    https://hal.archives-ouvertes.fr/hal-00673406
  • 45P. Gonçalves, M. Jara.

    Nonlinear fluctuations of weakly asymmetric interacting particle systems, in: Arch. Ration. Mech. Anal., 2014, vol. 212, no 2, pp. 597–644.

    http://dx.doi.org/10.1007/s00205-013-0693-x
  • 46M. Kardar, G. Parisi, Y.-C. Zhang.

    Dynamic Scaling of Growing Interfaces, in: Phys. Rev. Lett., Mar 1986, vol. 56, pp. 889–892.

    https://link.aps.org/doi/10.1103/PhysRevLett.56.889
  • 47S. Kozlov.

    The averaging of random operators, in: Mat. Sb. (N.S.), 1979, vol. 109(151), no 2, pp. 188–202, 327.
  • 48S. Müller.

    Homogenization of nonconvex integral functionals and cellular elastic materials, in: Arch. Rat. Mech. Anal., 1987, vol. 99, pp. 189–212.
  • 49A. Naddaf, T. Spencer.

    Estimates on the variance of some homogenization problems, Preprint, 1998.
  • 50G. Papanicolaou, S. Varadhan.

    Boundary value problems with rapidly oscillating random coefficients, in: Random fields, Vol. I, II (Esztergom, 1979), Amsterdam, Colloq. Math. Soc. János Bolyai, North-Holland, 1981, vol. 27, pp. 835–873.
  • 51H. Spohn.

    Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains, in: Journal of Statistical Physics, Mar 2014, vol. 154, no 5, pp. 1191–1227.

    https://doi.org/10.1007/s10955-014-0933-y
  • 52H. Spohn.

    The Kardar-Parisi-Zhang equation – a statistical physics perspective, in: Arxiv preprint 1601.00499, 01 2016.
  • 53C. Sulem, P.-L. Sulem.

    The nonlinear Schrödinger equation, Springer-Verlag, New-York, 1999.
  • 54L. Treloar.

    The Physics of Rubber Elasticity, Oxford at the Clarendon Press, Oxford, 1949.
  • 55W. A. Woyczyński.

    , Lévy Processes in the Physical SciencesO. E. Barndorff-Nielsen, S. I. Resnick, T. Mikosch (editors), Birkhäuser Boston, Boston, MA, 2001, pp. 241–266.

    https://doi.org/10.1007/978-1-4612-0197-7_11