Bibliography
Major publications by the team in recent years
-
1S. Arlot, A. Celisse.
Segmentation of the mean of heteroscedastic data via cross-validation, in: Statistics and Computing, 2010, vol. 21, pp. 613–632. -
2P. Bathia, S. Iovleff, G. Govaert.
An R Package and C++ library for Latent block models: Theory, usage and applications, in: Journal of Statistical Software, 2016.
https://hal.archives-ouvertes.fr/hal-01285610 -
3C. Biernacki, G. Celeux, G. Govaert.
Exact and Monte Carlo Calculations of Integrated Likelihoods for the Latent Class Model, in: Journal of Statistical Planning and Inference, 2010, vol. 140, pp. 2991-3002.
https://hal.archives-ouvertes.fr/hal-00554344 -
4C. Biernacki, J. Jacques.
A generative model for rank data based on an insertion sorting algorithm, in: Computational Statistics and Data Analysis, 2013, vol. 58, pp. 162-176. [ DOI : 10.1016/j.csda.2012.08.008 ]
https://hal.archives-ouvertes.fr/hal-00441209 -
5C. Biernacki, J. Jacques.
Model-Based Clustering of Multivariate Ordinal Data Relying on a Stochastic Binary Search Algorithm, in: Statistics and Computing, 2016, vol. 26, no 5, pp. 929-943.
https://hal.inria.fr/hal-01052447 -
6A. Celisse, J.-J. Daudin, L. Pierre.
Consistency of maximum likelihood and variational estimators in stochastic block model, in: Electronic Journal of Statistics, 2012, pp. 1847–1899.
http://projecteuclid.org/handle/euclid.ejs -
7M. Giacofci, S. Lambert-Lacroix, G. Marot, F. Picard.
Wavelet-based clustering for mixed-effects functional models in high dimension, in: Biometrics, March 2013, vol. 69, no 1, pp. 31-40. [ DOI : 10.1111/j.1541-0420.2012.01828.x ]
http://hal.inria.fr/hal-00782458 -
8J. Jacques, C. Preda.
Funclust: a curves clustering method using functional random variables density approximation, in: Neurocomputing, 2013, vol. 112, pp. 164-171.
https://hal.archives-ouvertes.fr/hal-00628247 -
9M. Marbac, C. Biernacki, V. Vandewalle.
Model-based clustering of Gaussian copulas for mixed data, in: Communications in Statistics - Theory and Methods, December 2016.
https://hal.archives-ouvertes.fr/hal-00987760 -
10V. Vandewalle, C. Biernacki, G. Celeux, G. Govaert.
A predictive deviance criterion for selecting a generative model in semi-supervised classification, in: Computational Statistics and Data Analysis, 2013, vol. 64, pp. 220-236.
https://hal.inria.fr/inria-00516991
Articles in International Peer-Reviewed Journals
-
11M.-S. Ahmed, M. K. Attouch, S. Dabo-Niang.
Binary functional linear models under choice-based sampling, in: Econometrics and Statistics , July 2017. [ DOI : 10.1016/j.ecosta.2017.07.001 ]
https://hal.inria.fr/hal-01654079 -
12P. Alquier, B. Guedj.
An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization, in: Mathematical Methods of Statistics, 2017.
https://hal.inria.fr/hal-01251878 -
13P. Alquier, B. Guedj.
Simpler PAC-Bayesian Bounds for Hostile Data, in: Machine Learning, 2017, forthcoming.
https://hal.inria.fr/hal-01385064 -
14E. Chazard, G. Ficheur, J.-B. Beuscart, C. Preda.
How to Compare the Length of Stay of Two Samples of Inpatients? A Simulation Study to Compare Type I and Type II Errors of 12 Statistical Tests, in: Value in Health, July 2017, vol. 20, no 7, pp. 992 - 998. [ DOI : 10.1016/j.jval.2017.02.009 ]
https://hal.archives-ouvertes.fr/hal-01655463 -
15S. Dabo-Niang, A. Amiri.
Density estimation over spatio-temporal data streams, in: Econometrics and Statistics , September 2017. [ DOI : 10.1016/j.ecosta.2017.08.005 ]
https://hal.inria.fr/hal-01654081 -
16J. Dubois, V. Dubois, H. Dehondt, P. Mazrooei, C. Mazuy, A. A. Sérandour, C. Gheeraert, P. Guillaume, E. Baugé, B. Derudas, N. Hennuyer, R. Paumelle, G. Marot, J. S. Carroll, M. Lupien, B. Staels, P. Lefebvre, J. Eeckhoute.
The logic of transcriptional regulator recruitment architecture at cis -regulatory modules controlling liver functions, in: Genome Research, June 2017, vol. 27, no 6, pp. 985 - 996. [ DOI : 10.1101/gr.217075.116 ]
https://hal.archives-ouvertes.fr/hal-01647846 -
17E. Hebbinckuys, J.-P. Marissal, C. Preda, V. Leclercq.
Assessing the burden of Clostridium difficile infections for hospitals, in: Journal of Hospital Infection, September 2017, pp. 1-7. [ DOI : 10.1016/j.jhin.2017.08.023 ]
https://hal.archives-ouvertes.fr/hal-01655460 -
18M. Marbac, C. Biernacki, V. Vandewalle.
Model-based clustering of Gaussian copulas for mixed data, in: Communications in Statistics - Theory and Methods, 2017, vol. 46, no 23, pp. 11635-11656.
https://hal.archives-ouvertes.fr/hal-00987760 -
19C. Preda, A. Dermoune.
Parametrizations, fixed and random effects, in: Journal of Multivariate Analysis, February 2017, vol. 154, pp. 162 - 176. [ DOI : 10.1016/j.jmva.2016.11.001 ]
https://hal.archives-ouvertes.fr/hal-01655461
Invited Conferences
-
20C. Biernacki, A. Lourme, M. Brunin, A. A. Celisse.
About Two Disinherited Sides of Statistics: Data Units and Computational Saving, in: Statlearn 2017, Lyon, France, April 2017, pp. 1-56.
https://hal.inria.fr/hal-01665905 -
21V. Vandewalle, C. Biernacki.
Dealing with missing data through mixture models, in: ICB Seminars 2017 - 154th Seminar on ”Statistics and clinical practice”, Varsovie, Poland, May 2017, pp. 1-3.
https://hal.inria.fr/hal-01667614 -
22V. Vandewalle, C. Biernacki.
Survival analysis with complex covariates: a model-based clustering preprocessing step, in: IEEE PHM 2017, Dallas, United States, June 2017.
https://hal.inria.fr/hal-01667588 -
23V. Vandewalle, T. Mottet, M. Marbac.
Model-based variable clustering, in: CMStatistics/ERCIM 2017 - 10th International Conference of the ERCIM WG on Computational and Methodological Statistics, London, United Kingdom, December 2017, pp. 1-19.
https://hal.inria.fr/hal-01691421 -
24V. Vandewalle.
Simultaneous dimension reduction and multi-objective clustering, in: IFCS 2017 - Conference of the International Federation of Classification Societies, Tokyo, Japan, August 2017, pp. 1-29.
https://hal.inria.fr/hal-01662271
Conferences without Proceedings
-
25M. Baelde, C. Biernacki, R. Greff.
A mixture model-based real-time audio sources classification method, in: The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP2017, New Orleans, United States, March 2017.
https://hal.archives-ouvertes.fr/hal-01420677 -
26M. Baelde, C. Biernacki, R. Greff.
Classification de signaux audio en temps-réel par un modèle de mélanges d'histogrammes, in: JDS 2017 - 49e Journées de Statistiques, Avignon, France, May 2017.
https://hal.archives-ouvertes.fr/hal-01592496 -
27C. Biernacki, A. Lourme.
Introduction Units in model-based clustering Units in model-based co-clustering Conclusion Unifying Data Units and Models in (Co-)Clustering, in: 2017 - Classification Society Conference, Santa Clara, United States, June 2017, pp. 1-38.
https://hal.archives-ouvertes.fr/hal-01653896 -
28C. Biernacki, A. Lourme.
Units in model-based clustering Units in model-based co-clustering , in: 24e rencontres de la Société Francophone de Classification, Lyon, France, June 2017.
https://hal.archives-ouvertes.fr/hal-01653899 -
29M. Brunin, C. Biernacki, A. Celisse.
Compromis précision - temps de calcul appliqué au problème de régression linéaire, in: 2017 - 49e Journées de Statistique de la SFdS, Avignon, France, May 2017, pp. 1-6.
https://hal.archives-ouvertes.fr/hal-01653754 -
30F. Chamroukhi, C. Biernacki.
Model-Based Co-Clustering of Multivariate Functional Data, in: ISI 2017 - 61st World Statistics Congress, Marrakech, Morocco, July 2017.
https://hal.archives-ouvertes.fr/hal-01653782 -
31A. Ehrhardt, C. Biernacki, V. Vandewalle, P. Heinrich, S. Beben.
Réintégration des refusés en Credit Scoring, in: 49e Journées de Statistique, Avignon , France, May 2017.
https://hal.archives-ouvertes.fr/hal-01653767 -
32S. Iovleff, M. Fauvel, S. Girard, C. Preda, V. Vandewalle.
Mixture Models with Missing data Classication of Satellite Image Time Series: QUALIMADOS: Atelier Qualité des masses de données scientiques, in: Journées Science des Données MaDICS 2017, Marseille, France, June 2017, pp. 1-60.
https://hal.archives-ouvertes.fr/hal-01649206
Scientific Books (or Scientific Book chapters)
-
33C. Biernacki.
Mixture models, in: Choix de modèles et agrégation, J.-J. Droesbeke, G. Saporta, C. Thomas-Agnan (editors), Technip, September 2017.
https://hal.inria.fr/hal-01252671 -
34C. Biernacki, C. Maugis.
High-dimensional clustering, in: Choix de modèles et agrégation, Sous la direction de J-J. DROESBEKE, G. SAPORTA, C. THOMAS-AGNAN Edition: Technip, September 2017.
https://hal.archives-ouvertes.fr/hal-01252673
Other Publications
-
35M. Baelde, C. Biernacki, R. Greff.
Real-time Audio Classification based on Mixture Models, March 2017, The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2017), Poster.
https://hal.archives-ouvertes.fr/hal-01481934 -
36C. Biernacki, A. Lourme.
Unifying Data Units and Models in (Co-)Clustering, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01653881 -
37S. Bouka, S. Dabo-Niang, G. M. Nkiet.
On estimation in a spatial functional linear regression model with derivatives, March 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01516616 -
38B. Guedj, B. Srinivasa Desikan.
Pycobra: A Python Toolbox for Ensemble Learning and Visualisation, April 2017, working paper or preprint.
https://hal.inria.fr/hal-01514059 -
39A. Hiba, N. Wicker, C. Biernacki.
Projection under pairwise distance controls, December 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01420662 -
40J. Jacques, C. Biernacki.
Model-Based Co-clustering for Ordinal Data, January 2017, working paper or preprint.
https://hal.inria.fr/hal-01448299 -
41M. Marbac, V. Vandewalle.
A tractable Multi-Partitions Clustering, January 2018, https://arxiv.org/abs/1801.07063 - working paper or preprint.
https://hal.inria.fr/hal-01691417 -
42M. Selosse, J. Jacques, C. Biernacki, F. Cousson-Gélie.
Analyzing health quality survey using constrained co-clustering model for ordinal data and some dynamic implication, November 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01643910 -
43M. Selosse, J. Jacques, C. Biernacki.
ordinalClust: a package for analyzing ordinal data, January 2018, working paper or preprint.
https://hal.inria.fr/hal-01678800