EN FR
EN FR
New Software and Platforms
Bilateral Contracts and Grants with Industry
Bibliography
New Software and Platforms
Bilateral Contracts and Grants with Industry
Bibliography


Bibliography

Major publications by the team in recent years
  • 1M. Agueh, G. Carlier.

    Barycenters in the Wasserstein space, in: SIAM J. Math. Anal., 2011, vol. 43, no 2, pp. 904–924.
  • 2J.-D. Benamou, Y. Brenier.

    A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, in: Numer. Math., 2000, vol. 84, no 3, pp. 375–393.

    http://dx.doi.org/10.1007/s002110050002
  • 3J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré.

    Iterative Bregman Projections for Regularized Transportation Problems, in: SIAM Journal on Scientific Computing, 2015, vol. 37, no 2, pp. A1111-A1138. [ DOI : 10.1137/141000439 ]

    http://hal.archives-ouvertes.fr/hal-01096124
  • 4J.-D. Benamou, F. Collino, J.-M. Mirebeau.

    Monotone and Consistent discretization of the Monge-Ampere operator, September 2014, pubished in MAth of Comp.

    https://hal.archives-ouvertes.fr/hal-01067540
  • 5M. Bruveris, F.-X. Vialard.

    On Completeness of Groups of Diffeomorphisms, in: ArXiv e-prints, March 2014.
  • 6V. Duval, G. Peyré.

    Exact Support Recovery for Sparse Spikes Deconvolution, in: Foundations of Computational Mathematics, 2014, pp. 1-41.

    http://dx.doi.org/10.1007/s10208-014-9228-6
  • 7F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu, F.-X. Vialard.

    Invariant Higher-Order Variational Problems, in: Communications in Mathematical Physics, January 2012, vol. 309, pp. 413-458.

    http://dx.doi.org/10.1007/s00220-011-1313-y
  • 8P. Machado Manhães De Castro, Q. Mérigot, B. Thibert.

    Intersection of paraboloids and application to Minkowski-type problems, in: Numerische Mathematik, November 2015. [ DOI : 10.1007/s00211-015-0780-z ]

    https://hal.archives-ouvertes.fr/hal-00952720
  • 9Q. Mérigot.

    A multiscale approach to optimal transport, in: Computer Graphics Forum, 2011, vol. 30, no 5, pp. 1583–1592.
Publications of the year

Articles in International Peer-Reviewed Journals

Invited Conferences

International Conferences with Proceedings

Conferences without Proceedings

Scientific Books (or Scientific Book chapters)

  • 20M. Bergounioux, J.-B. Caillau, T. Haberkorn, G. Peyré, C. Schnörr (editors)

    Variational methods in imaging and geometric control, Radon Series on Comput. and Applied Math., de Gruyter, January 2017, no 18.

    https://hal.archives-ouvertes.fr/hal-01315508

Other Publications

References in notes
  • 39I. Abraham, R. Abraham, M. Bergounioux, G. Carlier.

    Tomographic reconstruction from a few views: a multi-marginal optimal transport approach, in: Preprint Hal-01065981, 2014.
  • 40Y. Achdou, V. Perez.

    Iterative strategies for solving linearized discrete mean field games systems, in: Netw. Heterog. Media, 2012, vol. 7, no 2, pp. 197–217.

    http://dx.doi.org/10.3934/nhm.2012.7.197
  • 41M. Agueh, G. Carlier.

    Barycenters in the Wasserstein space, in: SIAM J. Math. Anal., 2011, vol. 43, no 2, pp. 904–924.
  • 42F. Alter, V. Caselles, A. Chambolle.

    Evolution of Convex Sets in the Plane by Minimizing the Total Variation Flow, in: Interfaces and Free Boundaries, 2005, vol. 332, pp. 329–366.
  • 43F. R. Bach.

    Consistency of the Group Lasso and Multiple Kernel Learning, in: J. Mach. Learn. Res., June 2008, vol. 9, pp. 1179–1225.

    http://dl.acm.org/citation.cfm?id=1390681.1390721
  • 44F. R. Bach.

    Consistency of Trace Norm Minimization, in: J. Mach. Learn. Res., June 2008, vol. 9, pp. 1019–1048.

    http://dl.acm.org/citation.cfm?id=1390681.1390716
  • 45M. Bates.

    Models of natural language understanding, in: Proceedings of the National Academy of Sciences, 1995, vol. 92, no 22, pp. 9977-9982.
  • 46H. H. Bauschke, P. L. Combettes.

    A Dykstra-like algorithm for two monotone operators, in: Pacific Journal of Optimization, 2008, vol. 4, no 3, pp. 383–391.
  • 47M. F. Beg, M. I. Miller, A. Trouvé, L. Younes.

    Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, in: International Journal of Computer Vision, February 2005, vol. 61, no 2, pp. 139–157.

    http://dx.doi.org/10.1023/B:VISI.0000043755.93987.aa
  • 48M. Beiglbock, P. Henry-Labordère, F. Penkner.

    Model-independent bounds for option prices mass transport approach, in: Finance and Stochastics, 2013, vol. 17, no 3, pp. 477-501.

    http://dx.doi.org/10.1007/s00780-013-0205-8
  • 49G. Bellettini, V. Caselles, M. Novaga.

    The Total Variation Flow in RN, in: J. Differential Equations, 2002, vol. 184, no 2, pp. 475–525.
  • 50J.-D. Benamou, Y. Brenier.

    A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, in: Numer. Math., 2000, vol. 84, no 3, pp. 375–393.

    http://dx.doi.org/10.1007/s002110050002
  • 51J.-D. Benamou, Y. Brenier.

    Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem, in: SIAM J. Appl. Math., 1998, vol. 58, no 5, pp. 1450–1461.
  • 52J.-D. Benamou, G. Carlier.

    Augmented Lagrangian algorithms for variational problems with divergence constraints, in: JOTA, 2015.
  • 53J.-D. Benamou, G. Carlier, N. Bonne.

    An Augmented Lagrangian Numerical approach to solving Mean-Fields Games, Inria, December 2013, 30 p.

    http://hal.inria.fr/hal-00922349
  • 54J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré.

    Iterative Bregman Projections for Regularized Transportation Problems, in: SIAM J. Sci. Comp., 2015, to appear.
  • 55J.-D. Benamou, G. Carlier, Q. Mérigot, É. Oudet.

    Discretization of functionals involving the Monge-Ampère operator, HAL, July 2014.

    https://hal.archives-ouvertes.fr/hal-01056452
  • 56J.-D. Benamou, F. Collino, J.-M. Mirebeau.

    Monotone and Consistent discretization of the Monge-Ampère operator, in: arXiv preprint arXiv:1409.6694, 2014, to appear in Math of Comp.
  • 57J.-D. Benamou, B. D. Froese, A. Oberman.

    Two numerical methods for the elliptic Monge-Ampère equation, in: M2AN Math. Model. Numer. Anal., 2010, vol. 44, no 4, pp. 737–758.
  • 58J.-D. Benamou, B. D. Froese, A. Oberman.

    Numerical solution of the optimal transportation problem using the Monge–Ampere equation, in: Journal of Computational Physics, 2014, vol. 260, pp. 107–126.
  • 59F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio.

    Numerical approximation of continuous traffic congestion equilibria, in: Netw. Heterog. Media, 2009, vol. 4, no 3, pp. 605–623.
  • 60M. Benning, M. Burger.

    Ground states and singular vectors of convex variational regularization methods, in: Meth. Appl. Analysis, 2013, vol. 20, pp. 295–334.
  • 61B. Berkels, A. Effland, M. Rumpf.

    Time discrete geodesic paths in the space of images, in: Arxiv preprint, 2014.
  • 62E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess.

    Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, in: Science, 2006, vol. 313, no 5793, pp. 1642–1645. [ DOI : 10.1126/science.1127344 ]

    http://science.sciencemag.org/content/313/5793/1642
  • 63J. Bigot, T. Klein.

    Consistent estimation of a population barycenter in the Wasserstein space, in: Preprint arXiv:1212.2562, 2012.
  • 64A. Blanchet, G. Carlier.

    Optimal Transport and Cournot-Nash Equilibria, in: Mathematics of Operations Resarch, 2015, to appear.
  • 65A. Blanchet, P. Laurençot.

    The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in Rd,d3, in: Comm. Partial Differential Equations, 2013, vol. 38, no 4, pp. 658–686.

    http://dx.doi.org/10.1080/03605302.2012.757705
  • 66J. Bleyer, G. Carlier, V. Duval, J.-M. Mirebeau, G. Peyré.

    A Γ-Convergence Result for the Upper Bound Limit Analysis of Plates, in: arXiv preprint arXiv:1410.0326, 2014.
  • 67N. Bonneel, J. Rabin, G. Peyré, H. Pfister.

    Sliced and Radon Wasserstein Barycenters of Measures, in: Journal of Mathematical Imaging and Vision, 2015, vol. 51, no 1, pp. 22–45.

    http://hal.archives-ouvertes.fr/hal-00881872/
  • 68U. Boscain, R. Chertovskih, J.-P. Gauthier, D. Prandi, A. Remizov.

    Highly corrupted image inpainting through hypoelliptic diffusion, Preprint CMAP, 2014.

    http://hal.archives-ouvertes.fr/hal-00842603/
  • 69G. Bouchitté, G. Buttazzo.

    Characterization of optimal shapes and masses through Monge-Kantorovich equation, in: J. Eur. Math. Soc. (JEMS), 2001, vol. 3, no 2, pp. 139–168.

    http://dx.doi.org/10.1007/s100970000027
  • 70L. Brasco, G. Carlier, F. Santambrogio.

    Congested traffic dynamics, weak flows and very degenerate elliptic equations, in: J. Math. Pures Appl. (9), 2010, vol. 93, no 6, pp. 652–671.
  • 71L. M. Bregman.

    The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, in: USSR computational mathematics and mathematical physics, 1967, vol. 7, no 3, pp. 200–217.
  • 72Y. Brenier.

    Generalized solutions and hydrostatic approximation of the Euler equations, in: Phys. D, 2008, vol. 237, no 14-17, pp. 1982–1988.

    http://dx.doi.org/10.1016/j.physd.2008.02.026
  • 73Y. Brenier.

    Décomposition polaire et réarrangement monotone des champs de vecteurs, in: C. R. Acad. Sci. Paris Sér. I Math., 1987, vol. 305, no 19, pp. 805–808.
  • 74Y. Brenier.

    Polar factorization and monotone rearrangement of vector-valued functions, in: Comm. Pure Appl. Math., 1991, vol. 44, no 4, pp. 375–417.

    http://dx.doi.org/10.1002/cpa.3160440402
  • 75Y. Brenier, U. Frisch, M. Henon, G. Loeper, S. Matarrese, R. Mohayaee, A. Sobolevski.

    Reconstruction of the early universe as a convex optimization problem, in: Mon. Not. Roy. Astron. Soc., 2003, vol. 346, pp. 501–524.

    http://arxiv.org/pdf/astro-ph/0304214.pdf
  • 76M. Bruveris, L. Risser, F.-X. Vialard.

    Mixture of Kernels and Iterated Semidirect Product of Diffeomorphisms Groups, in: Multiscale Modeling & Simulation, 2012, vol. 10, no 4, pp. 1344-1368.
  • 77M. Burger, M. DiFrancesco, P. Markowich, M. T. Wolfram.

    Mean field games with nonlinear mobilities in pedestrian dynamics, in: DCDS B, 2014, vol. 19.
  • 78M. Burger, M. Franek, C. Schonlieb.

    Regularized regression and density estimation based on optimal transport, in: Appl. Math. Res. Expr., 2012, vol. 2, pp. 209–253.
  • 79M. Burger, S. Osher.

    A guide to the TV zoo, in: Level-Set and PDE-based Reconstruction Methods, Springer, 2013.
  • 80G. Buttazzo, C. Jimenez, É. Oudet.

    An optimization problem for mass transportation with congested dynamics, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1961–1976.
  • 81H. Byrne, D. Drasdo.

    Individual-based and continuum models of growing cell populations: a comparison, in: Journal of Mathematical Biology, 2009, vol. 58, no 4-5, pp. 657-687.
  • 82L. A. Caffarelli.

    The regularity of mappings with a convex potential, in: J. Amer. Math. Soc., 1992, vol. 5, no 1, pp. 99–104.

    http://dx.doi.org/10.2307/2152752
  • 83L. A. Caffarelli, S. A. Kochengin, V. Oliker.

    On the numerical solution of the problem of reflector design with given far-field scattering data, in: Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), Providence, RI, Contemp. Math., Amer. Math. Soc., 1999, vol. 226, pp. 13–32.

    http://dx.doi.org/10.1090/conm/226/03233
  • 84C. CanCeritoglu.

    Computational Analysis of LDDMM for Brain Mapping, in: Frontiers in Neuroscience, 2013, vol. 7.
  • 85E. Candes, M. Wakin.

    An Introduction to Compressive Sensing, in: IEEE Signal Processing Magazine, 2008, vol. 25, no 2, pp. 21–30.
  • 86E. J. Candès, C. Fernandez-Granda.

    Super-Resolution from Noisy Data, in: Journal of Fourier Analysis and Applications, 2013, vol. 19, no 6, pp. 1229–1254.
  • 87E. J. Candès, C. Fernandez-Granda.

    Towards a Mathematical Theory of Super-Resolution, in: Communications on Pure and Applied Mathematics, 2014, vol. 67, no 6, pp. 906–956.
  • 88P. Cardaliaguet, G. Carlier, B. Nazaret.

    Geodesics for a class of distances in the space of probability measures, in: Calc. Var. Partial Differential Equations, 2013, vol. 48, no 3-4, pp. 395–420.
  • 89G. Carlier.

    A general existence result for the principal-agent problem with adverse selection, in: J. Math. Econom., 2001, vol. 35, no 1, pp. 129–150.
  • 90G. Carlier, V. Chernozhukov, A. Galichon.

    Vector Quantile Regression, Arxiv 1406.4643, 2014.
  • 91G. Carlier, M. Comte, I. Ionescu, G. Peyré.

    A Projection Approach to the Numerical Analysis of Limit Load Problems, in: Mathematical Models and Methods in Applied Sciences, 2011, vol. 21, no 6, pp. 1291–1316. [ DOI : doi:10.1142/S0218202511005325 ]

    http://hal.archives-ouvertes.fr/hal-00450000/
  • 92G. Carlier, X. Dupuis.

    An iterated projection approach to variational problems under generalized convexity constraints and applications, In preparation, 2015.
  • 93G. Carlier, I. Ekeland.

    Matching for teams, in: Econom. Theory, 2010, vol. 42, no 2, pp. 397–418.
  • 94G. Carlier, C. Jimenez, F. Santambrogio.

    Optimal Transportation with Traffic Congestion and Wardrop Equilibria, in: SIAM Journal on Control and Optimization, 2008, vol. 47, no 3, pp. 1330-1350.
  • 95G. Carlier, T. Lachand-Robert, B. Maury.

    A numerical approach to variational problems subject to convexity constraint, in: Numer. Math., 2001, vol. 88, no 2, pp. 299–318.

    http://dx.doi.org/10.1007/PL00005446
  • 96G. Carlier, A. Oberman, É. Oudet.

    Numerical methods for matching for teams and Wasserstein barycenters, in: M2AN, 2015, to appear.
  • 97G. Carlier, F. Santambrogio.

    A continuous theory of traffic congestion and Wardrop equilibria, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2011, vol. 390, no Teoriya Predstavlenii, Dinamicheskie Sistemy, Kombinatornye Metody. XX, pp. 69–91, 307–308.
  • 98J. A. Carrillo, S. Lisini, E. Mainini.

    Uniqueness for Keller-Segel-type chemotaxis models, in: Discrete Contin. Dyn. Syst., 2014, vol. 34, no 4, pp. 1319–1338.

    http://dx.doi.org/10.3934/dcds.2014.34.1319
  • 99V. Caselles, A. Chambolle, M. Novaga.

    The discontinuity set of solutions of the TV denoising problem and some extensions, in: Multiscale Modeling and Simulation, 2007, vol. 6, no 3, pp. 879–894.
  • 100F. A. C. C. Chalub, P. A. Markowich, B. Perthame, C. Schmeiser.

    Kinetic models for chemotaxis and their drift-diffusion limits, in: Monatsh. Math., 2004, vol. 142, no 1-2, pp. 123–141.

    http://dx.doi.org/10.1007/s00605-004-0234-7
  • 101A. Chambolle, T. Pock.

    On the ergodic convergence rates of a first-order primal-dual algorithm, in: Preprint OO/2014/09/4532, 2014.
  • 102G. Charpiat, G. Nardi, G. Peyré, F.-X. Vialard.

    Finsler Steepest Descent with Applications to Piecewise-regular Curve Evolution, Preprint hal-00849885, 2013.

    http://hal.archives-ouvertes.fr/hal-00849885/
  • 103S. S. Chen, D. L. Donoho, M. A. Saunders.

    Atomic decomposition by basis pursuit, in: SIAM journal on scientific computing, 1999, vol. 20, no 1, pp. 33–61.
  • 104P. Choné, H. V. J. Le Meur.

    Non-convergence result for conformal approximation of variational problems subject to a convexity constraint, in: Numer. Funct. Anal. Optim., 2001, vol. 22, no 5-6, pp. 529–547.

    http://dx.doi.org/10.1081/NFA-100105306
  • 105C. Cotar, G. Friesecke, C. Kluppelberg.

    Density Functional Theory and Optimal Transportation with Coulomb Cost, in: Communications on Pure and Applied Mathematics, 2013, vol. 66, no 4, pp. 548–599.

    http://dx.doi.org/10.1002/cpa.21437
  • 106M. J. P. Cullen, W. Gangbo, G. Pisante.

    The semigeostrophic equations discretized in reference and dual variables, in: Arch. Ration. Mech. Anal., 2007, vol. 185, no 2, pp. 341–363.

    http://dx.doi.org/10.1007/s00205-006-0040-6
  • 107M. J. P. Cullen, J. Norbury, R. J. Purser.

    Generalised Lagrangian solutions for atmospheric and oceanic flows, in: SIAM J. Appl. Math., 1991, vol. 51, no 1, pp. 20–31.
  • 108M. Cuturi, D. Avis.

    Ground Metric Learning, in: J. Mach. Learn. Res., January 2014, vol. 15, no 1, pp. 533–564.

    http://dl.acm.org/citation.cfm?id=2627435.2627452
  • 109M. Cuturi.

    Sinkhorn Distances: Lightspeed Computation of Optimal Transport, in: Proc. NIPS, C. J. C. Burges, L. Bottou, Z. Ghahramani, K. Q. Weinberger (editors), 2013, pp. 2292–2300.
  • 110Y. De Castro, F. Gamboa, D. Henrion, R. Hess, J. Lasserre.

    Approximate Optimal Designs for Multivariate Polynomial Regression, October 2017, Accepted to Annals of Statistics.

    https://hal.laas.fr/hal-01483490
  • 111E. J. Dean, R. Glowinski.

    Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type, in: Comput. Methods Appl. Mech. Engrg., 2006, vol. 195, no 13-16, pp. 1344–1386.
  • 112V. Duval, G. Peyré.

    Exact Support Recovery for Sparse Spikes Deconvolution, in: Foundations of Computational Mathematics, 2014, pp. 1-41.

    http://dx.doi.org/10.1007/s10208-014-9228-6
  • 113V. Duval, G. Peyré.

    Sparse Spikes Deconvolution on Thin Grids, HAL, 2015, no 01135200.

    http://hal.archives-ouvertes.fr/hal-01135200
  • 114J. Fehrenbach, J.-M. Mirebeau.

    Sparse Non-negative Stencils for Anisotropic Diffusion, in: Journal of Mathematical Imaging and Vision, 2014, vol. 49, no 1, pp. 123-147.

    http://dx.doi.org/10.1007/s10851-013-0446-3
  • 115C. Fernandez-Granda.

    Support detection in super-resolution, in: Proc. Proceedings of the 10th International Conference on Sampling Theory and Applications, 2013, pp. 145–148.
  • 116A. Figalli, R. McCann, Y. Kim.

    When is multi-dimensional screening a convex program?, in: Journal of Economic Theory, 2011.
  • 117J.-B. Fiot, H. Raguet, L. Risser, L. D. Cohen, J. Fripp, F.-X. Vialard.

    Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression, in: NeuroImage: Clinical, 2014, vol. 4, no 0, pp. 718 - 729. [ DOI : 10.1016/j.nicl.2014.02.002 ]

    http://www.sciencedirect.com/science/article/pii/S2213158214000205
  • 118J.-B. Fiot, L. Risser, L. D. Cohen, J. Fripp, F.-X. Vialard.

    Local vs Global Descriptors of Hippocampus Shape Evolution for Alzheimer's Longitudinal Population Analysis, in: Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, vol. 7570, pp. 13-24.

    http://dx.doi.org/10.1007/978-3-642-33555-6_2
  • 119U. Frisch, S. Matarrese, R. Mohayaee, A. Sobolevski.

    Monge-Ampère-Kantorovitch (MAK) reconstruction of the eary universe, in: Nature, 2002, vol. 417, no 260.
  • 120B. D. Froese, A. Oberman.

    Convergent filtered schemes for the Monge-Ampère partial differential equation, in: SIAM J. Numer. Anal., 2013, vol. 51, no 1, pp. 423–444.
  • 121A. Galichon, P. Henry-Labordère, N. Touzi.

    A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Loopback options, in: submitted to Annals of Applied Probability, 2011.
  • 122W. Gangbo, R. McCann.

    The geometry of optimal transportation, in: Acta Math., 1996, vol. 177, no 2, pp. 113–161.

    http://dx.doi.org/10.1007/BF02392620
  • 123E. Ghys.

    Gaspard Monge, Le mémoire sur les déblais et les remblais, in: Image des mathématiques, CNRS, 2012.

    http://images.math.cnrs.fr/Gaspard-Monge,1094.html
  • 124O. Guéant, J.-M. Lasry, P.-L. Lions.

    Mean field games and applications, in: Paris-Princeton Lectures on Mathematical Finance 2010, Berlin, Lecture Notes in Math., Springer, 2011, vol. 2003, pp. 205–266.

    http://dx.doi.org/10.1007/978-3-642-14660-2_3
  • 125T. Hastie, R. Tibshirani, J. Friedman.

    The Elements of Statistical Learning, Springer Series in Statistics, Springer New York Inc., New York, NY, USA, 2001.
  • 126G. Herman.

    Image reconstruction from projections: the fundamentals of computerized tomography, Academic Press, 1980.
  • 127D. D. Holm, J. T. Ratnanather, A. Trouvé, L. Younes.

    Soliton dynamics in computational anatomy, in: NeuroImage, 2004, vol. 23, pp. S170–S178.
  • 128B. J. Hoskins.

    The mathematical theory of frontogenesis, in: Annual review of fluid mechanics, Vol. 14, Palo Alto, CA, Annual Reviews, 1982, pp. 131–151.
  • 129R. Jordan, D. Kinderlehrer, F. Otto.

    The variational formulation of the Fokker-Planck equation, in: SIAM J. Math. Anal., 1998, vol. 29, no 1, pp. 1–17.
  • 130W. Jäger, S. Luckhaus.

    On explosions of solutions to a system of partial differential equations modelling chemotaxis, in: Trans. Amer. Math. Soc., 1992, vol. 329, no 2, pp. 819–824.

    http://dx.doi.org/10.2307/2153966
  • 131L. Kantorovitch.

    On the translocation of masses, in: C. R. (Doklady) Acad. Sci. URSS (N.S.), 1942, vol. 37, pp. 199–201.
  • 132E. Klann.

    A Mumford-Shah-Like Method for Limited Data Tomography with an Application to Electron Tomography, in: SIAM J. Imaging Sciences, 2011, vol. 4, no 4, pp. 1029–1048.
  • 133J.-M. Lasry, P.-L. Lions.

    Mean field games, in: Jpn. J. Math., 2007, vol. 2, no 1, pp. 229–260.

    http://dx.doi.org/10.1007/s11537-007-0657-8
  • 134J. Lasserre.

    Global Optimization with Polynomials and the Problem of Moments, in: SIAM Journal on Optimization, 2001, vol. 11, no 3, pp. 796-817.
  • 135J. Lellmann, D. A. Lorenz, C. Schönlieb, T. Valkonen.

    Imaging with Kantorovich-Rubinstein Discrepancy, in: SIAM J. Imaging Sciences, 2014, vol. 7, no 4, pp. 2833–2859.
  • 136A. S. Lewis.

    Active sets, nonsmoothness, and sensitivity, in: SIAM Journal on Optimization, 2003, vol. 13, no 3, pp. 702–725.
  • 137B. Li, F. Habbal, M. Ortiz.

    Optimal transportation meshfree approximation schemes for Fluid and plastic Flows, in: Int. J. Numer. Meth. Engng 83:1541–579, 2010, vol. 83, pp. 1541–1579.
  • 138G. Loeper.

    A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system, in: SIAM J. Math. Anal., 2006, vol. 38, no 3, pp. 795–823 (electronic).
  • 139G. Loeper, F. Rapetti.

    Numerical solution of the Monge-Ampére equation by a Newton's algorithm, in: C. R. Math. Acad. Sci. Paris, 2005, vol. 340, no 4, pp. 319–324.
  • 140D. Lombardi, E. Maitre.

    Eulerian models and algorithms for unbalanced optimal transport, in: Preprint hal-00976501, 2013.
  • 141C. Léonard.

    A survey of the Schrödinger problem and some of its connections with optimal transport, in: Discrete Contin. Dyn. Syst., 2014, vol. 34, no 4, pp. 1533–1574.

    http://dx.doi.org/10.3934/dcds.2014.34.1533
  • 142J. Maas, M. Rumpf, C. Schonlieb, S. Simon.

    A generalized model for optimal transport of images including dissipation and density modulation, in: Arxiv preprint, 2014.
  • 143S. G. Mallat.

    A wavelet tour of signal processing, Third, Elsevier/Academic Press, Amsterdam, 2009.
  • 144B. Maury, A. Roudneff-Chupin, F. Santambrogio.

    A macroscopic crowd motion model of gradient flow type, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1787–1821.

    http://dx.doi.org/10.1142/S0218202510004799
  • 145M. I. Miller, A. Trouvé, L. Younes.

    Geodesic Shooting for Computational Anatomy, in: Journal of Mathematical Imaging and Vision, March 2006, vol. 24, no 2, pp. 209–228.

    http://dx.doi.org/10.1007/s10851-005-3624-0
  • 146J.-M. Mirebeau.

    Adaptive, Anisotropic and Hierarchical cones of Discrete Convex functions, in: Preprint, 2014.
  • 147J.-M. Mirebeau.

    Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction, in: SIAM Journal on Numerical Analysis, 2014, vol. 52, no 4, pp. 1573-1599.
  • 148Q. Mérigot.

    A multiscale approach to optimal transport, in: Computer Graphics Forum, 2011, vol. 30, no 5, pp. 1583–1592.
  • 149Q. Mérigot, É. Oudet.

    Handling Convexity-Like Constraints in Variational Problems, in: SIAM J. Numer. Anal., 2014, vol. 52, no 5, pp. 2466–2487.
  • 150N. Papadakis, G. Peyré, É. Oudet.

    Optimal Transport with Proximal Splitting, in: SIAM Journal on Imaging Sciences, 2014, vol. 7, no 1, pp. 212–238. [ DOI : 10.1137/130920058 ]

    http://hal.archives-ouvertes.fr/hal-00816211/
  • 151B. Pass, N. Ghoussoub.

    Optimal transport: From moving soil to same-sex marriage, in: CMS Notes, 2013, vol. 45, pp. 14–15.
  • 152B. Pass.

    Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem, in: SIAM Journal on Mathematical Analysis, 2011, vol. 43, no 6, pp. 2758-2775.
  • 153J. Pennington, R. Socher, C. Manning.

    Glove: Global Vectors for Word Representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, 2014, pp. 1532–1543.
  • 154B. Perthame, F. Quiros, J. L. Vazquez.

    The Hele-Shaw Asymptotics for Mechanical Models of Tumor Growth, in: Archive for Rational Mechanics and Analysis, 2014, vol. 212, no 1, pp. 93-127.

    http://dx.doi.org/10.1007/s00205-013-0704-y
  • 155J. Petitot.

    The neurogeometry of pinwheels as a sub-riemannian contact structure, in: Journal of Physiology-Paris, 2003, vol. 97, no 23, pp. 265–309.
  • 156G. Peyré.

    Texture Synthesis with Grouplets, in: Pattern Analysis and Machine Intelligence, IEEE Transactions on, April 2010, vol. 32, no 4, pp. 733–746.
  • 157B. Piccoli, F. Rossi.

    Generalized Wasserstein distance and its application to transport equations with source, in: Archive for Rational Mechanics and Analysis, 2014, vol. 211, no 1, pp. 335–358.
  • 158C. Poon.

    Structure dependent sampling in compressed sensing: theoretical guarantees for tight frames, in: Applied and Computational Harmonic Analysis, 2015.
  • 159C. Prins, J.H.M. ten. Thije Boonkkamp, J. van . Roosmalen, W.L. IJzerman, T.W. Tukker.

    A numerical method for the design of free-form reflectors for lighting applications, in: External Report, CASA Report, No. 13-22, 2013.

    http://www.win.tue.nl/analysis/reports/rana13-22.pdf
  • 160H. Raguet, J. Fadili, G. Peyré.

    A Generalized Forward-Backward Splitting, in: SIAM Journal on Imaging Sciences, 2013, vol. 6, no 3, pp. 1199–1226. [ DOI : 10.1137/120872802 ]

    http://hal.archives-ouvertes.fr/hal-00613637/
  • 161J.-C. Rochet, P. Choné.

    Ironing, Sweeping and multi-dimensional screening, in: Econometrica, 1998.
  • 162J. Rubinstein, G. Wolansky.

    Intensity control with a free-form lens, in: J Opt Soc Am A Opt Image Sci Vis., 2007, vol. 24.
  • 163L. Rudin, S. Osher, E. Fatemi.

    Nonlinear total variation based noise removal algorithms, in: Physica D: Nonlinear Phenomena, 1992, vol. 60, no 1, pp. 259–268.

    http://dx.doi.org/10.1016/0167-2789(92)90242-F
  • 164M. J. Rust, M. Bates, X. Zhuang.

    Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), in: Nature methods, 2006, vol. 3, no 10, pp. 793–796.
  • 165O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, F. Lenzen.

    Variational Methods in Imaging, Springer, 2008.
  • 166T. Schmah, L. Risser, F.-X. Vialard.

    Left-Invariant Metrics for Diffeomorphic Image Registration with Spatially-Varying Regularisation, in: MICCAI (1), 2013, pp. 203-210.
  • 167T. Schmah, L. Risser, F.-X. Vialard.

    Diffeomorphic image matching with left-invariant metrics, in: Fields Institute Communications series, special volume in memory of Jerrold E. Marsden, January 2014.
  • 168B. Schölkopf, A. J. Smola.

    Learning with kernels : support vector machines, regularization, optimization, and beyond, Adaptive computation and machine learning, MIT Press, 2002.

    http://www.worldcat.org/oclc/48970254
  • 169J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, L. Guibas.

    Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains, in: ACM Transaction on Graphics, Proc. SIGGRAPH'15, 2015, to appear.
  • 170R. Tibshirani.

    Regression shrinkage and selection via the Lasso, in: Journal of the Royal Statistical Society. Series B. Methodological, 1996, vol. 58, no 1, pp. 267–288.
  • 171A. Trouvé, F.-X. Vialard.

    Shape splines and stochastic shape evolutions: A second order point of view, in: Quarterly of Applied Mathematics, 2012.
  • 172S. Vaiter, M. Golbabaee, J. Fadili, G. Peyré.

    Model Selection with Piecewise Regular Gauges, in: Information and Inference, 2015, to appear.

    http://hal.archives-ouvertes.fr/hal-00842603/
  • 173F.-X. Vialard, L. Risser, D. Rueckert, C. Cotter.

    Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation, in: International Journal of Computer Vision, 2012, vol. 97, no 2, pp. 229-241.

    http://dx.doi.org/10.1007/s11263-011-0481-8
  • 174F.-X. Vialard, L. Risser.

    Spatially-Varying Metric Learning for Diffeomorphic Image Registration: A Variational Framework, in: Medical Image Computing and Computer-Assisted Intervention MICCAI 2014, Lecture Notes in Computer Science, Springer International Publishing, 2014, vol. 8673, pp. 227-234.
  • 175C. Villani.

    Topics in optimal transportation, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003, vol. 58, xvi+370 p.
  • 176C. Villani.

    Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009, vol. 338, xxii+973 p, Old and new.

    http://dx.doi.org/10.1007/978-3-540-71050-9
  • 177X.-J. Wang.

    On the design of a reflector antenna. II, in: Calc. Var. Partial Differential Equations, 2004, vol. 20, no 3, pp. 329–341.

    http://dx.doi.org/10.1007/s00526-003-0239-4
  • 178B. Wirth, L. Bar, M. Rumpf, G. Sapiro.

    A continuum mechanical approach to geodesics in shape space, in: International Journal of Computer Vision, 2011, vol. 93, no 3, pp. 293–318.
  • 179J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, S. Yan.

    Sparse representation for computer vision and pattern recognition, in: Proceedings of the IEEE, 2010, vol. 98, no 6, pp. 1031–1044.