EN FR
EN FR


Section: Overall Objectives

Challenges

The term cloud was coined 10 years ago. Today cloud computing is widely adopted for a wide range of usage: information systems outsourcing, web service hosting, scientific computing, data analytics, back-end of mobile and IoT applications. There is a wide variety of cloud service providers (IaaS, PaaS, SaaS) resulting in difficulties for customers to select the services fitting their needs. Production clouds are powered by huge data centers that customers reach through the Internet. This current model raises a number of issues. Cloud computing generates a lot of traffic resulting in ISP providers needing to increase the network capacity. An increasing amount of always larger data centers consumes a lot of energy. Cloud customers experience poor quality of experience for highly interactive mobile applications as their requests are dealt with in data centers that are several hops away. The centralization of data in clouds also raises (i) security issues as clouds are a target of choice for attackers and (ii) privacy issues with data aggregation. Recently new cloud architectures have been proposed to overcome the scalability, latency, and energy issues of traditional centralized data centers. Various flavors of distributed cloud computing are emerging depending on the resources exploited: resources in the core network (distributed cloud), resources at the edge of the network (edge clouds) and even resources in the people swarms of devices (fog computing) enabling scalable cloud computing. These distributed clouds raise new challenges for resource and application management.

The ultimate goal of Myriads team is making highly distributed clouds sustainable. By sustainability we mean green, efficient and secure clouds. We plan to study highly distributed clouds including edge clouds and fog computing. In this context, we will investigate novel techniques for greening clouds including the optimization of energy consumption in distributed clouds in the context of smart grids. As more and more critical information system are outsourced in the cloud and personal data captured by sensors embedded in smart objects and smartphones are stored in the cloud, we will investigate security and privacy issues in two directions: cloud security monitoring and personal data protection in cloud-based IoT applications.

System research requires experimental validation based on simulation and/or prototyping. Reproducible experimentation is essential. We will contribute to the design and implementation of simulators well suited to the study of distributed clouds (architecture, energy consumption) and of large scale experimentation platforms for distributed systems enabling reproducible experiments.