Problème sur cette référence dans Hal : cite:nguyen:hal-01668634 (clef=kn incompatibilité de champs spécifiques : invité, comité de lecture, audience etc.) Contacter l'equipe du raweb (url du Helpdesk https://helpdesk.inria.fr/categories/181/submit ) pour correction du bogue. Merci.
Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.
  • 2S. Delcourte, L. Fézoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.
  • 3S. Descombes, C. Durochat, S. Lanteri, L. Moya, C. Scheid, J. Viquerat.

    Recent advances on a DGTD method for time-domain electromagnetics, in: Photonics and Nanostructures - Fundamentals and Applications, 2013, vol. 11, no 4, pp. 291–302.
  • 4V. Dolean, H. Fahs, F. Loula, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.
  • 5C. Durochat, S. Lanteri, R. Léger.

    A non-conforming multi-element DGTD method for the simulation of human exposure to electromagnetic waves, in: Int. J. Numer. Model., Electron. Netw. Devices Fields, 2013, vol. 27, pp. 614-625.
  • 6C. Durochat, S. Lanteri, C. Scheid.

    High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704.
  • 7M. El Bouajaji, V. Dolean, M. Gander, S. Lanteri.

    Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, in: SIAM J. Sci. Comp., 2012, vol. 34, no 4, pp. A20148–A2071.
  • 8M. El Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251.
  • 9V. Etienne, E. Chaljub, J. Virieux, N. Glinsky.

    An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, in: Geophys. J. Int., 2010, vol. 183, no 2, pp. 941–962.
  • 10H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
  • 11H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
  • 12H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.
  • 13L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.
  • 14S. Lanteri, D. Paredes, C. Scheid, F. Valentin.

    The multiscale hybrid-mixed method for the Maxwell equations in heterogeneous media, 2016, Resubmitted after minor revisions.

  • 15S. Lanteri, C. Scheid.

    Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459.
  • 16L. Li, S. Lanteri, R. Perrussel.

    Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations, in: COMPEL, 2013, pp. 1112–1138.
  • 17L. Li, S. Lanteri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581.
  • 18R. Léger, J. Viquerat, C. Durochat, C. Scheid, S. Lanteri.

    A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, in: J. Comp. Appl. Math., 2014, vol. 270, pp. 330–342.
  • 19L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218.
  • 20L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246.
  • 21F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.

    A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334.
  • 22J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.

    Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.

Publications of the year

Articles in International Peer-Reviewed Journals

  • 23M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Hybridizable discontinuous Galerkin method for the two-dimensional frequency-domain elastic wave equations, in: Geophysical Journal International, 2017, no 1-38, forthcoming. [ DOI : 10.1093/gji/ggx533 ]

  • 24A. Christophe, S. Descombes, S. Lanteri.

    An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations, in: Applied Mathematics and Computation, February 2018, vol. 319, pp. 395 - 408. [ DOI : 10.1016/j.amc.2017.04.023 ]

  • 25S. Descombes, S. Lanteri, L. Moya.

    Temporal convergence analysis of a locally implicit discontinuous galerkin time domain method for electromagnetic wave propagation in dispersive media, in: Journal of Computational and Applied Mathematics, May 2017, no 316, pp. 122–132. [ DOI : 10.1016/j.cam.2016.09.038 ]

  • 26S. Lanteri, C. Scheid, J. Viquerat.

    Analysis of a Generalized Dispersive Model Coupled to a DGTD Method with Application to Nanophotonics, in: SIAM Journal on Scientific Computing, January 2017, vol. 39, no 3, pp. A831 - A859. [ DOI : 10.1137/15M105207X ]

  • 27L. Li, T.-Z. Huang, S. Lanteri, B. Li.

    A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation, in: IEEE Transactions on Antennas and Propagation, January 2018, vol. 66, no 1, pp. 242 - 254. [ DOI : 10.1109/TAP.2017.2768562 ]

  • 28L. Li, S. Lanteri, N. A. Mortensen, M. Wubs.

    A hybridizable discontinuous Galerkin method for solving nonlocal optical response models, in: Computer Physics Communications, October 2017, vol. 219, pp. 99 - 107. [ DOI : 10.1016/j.cpc.2017.05.012 ]

  • 29H. Wang, L. Li, B. Li, S. Descombes, S. Lanteri.

    A New Family of Exponential-Based High-Order DGTD Methods for Modeling 3-D Transient Multiscale Electromagnetic Problems, in: IEEE Transactions on Antennas and Propagation, November 2017, vol. 65, no 11, pp. 5960 - 5974. [ DOI : 10.1109/TAP.2017.2752223 ]


International Conferences with Proceedings

  • 30N. Schmitt, S. Lanteri, C. Scheid.

    3D Simulations of spatially dispersive Metals with a discontinuous Galerkin Time Domain Method, in: KWT 2017, Riezlern, Austria, September 2017.

  • 31N. Schmitt.

    3D Simulations of Spatially Dispersive Metals with a Finite Element Time Domain Method, in: NANOP 2017, Barcelona, Spain, September 2017.


Conferences without Proceedings

  • 32S. H. Christiansen, C. Scheid.

    A structure preserving numerical discretization framework for the Maxwell Klein Gordon equations in 2D, in: ENUMATH 2017, Voss, Norway, September 2017.

  • 33S. Lanteri, D. Paredes, C. Scheid, F. Valentin.

    The Multiscale Hybrid Mixed method for time dependent propagation of electromagnetic waves, in: ENUMATH 2017, Voss, Norway, September 2017.

  • 34N. Schmitt, C. Scheid, J. Viquerat, S. Lanteri, A. Moreau.

    A Discontinuous Galerkin Time Domain Method for Plasmonics with a Nonlocal Dispersion Model, in: PIERS 2017, St. Petersburg, Russia, May 2017.

  • 35N. Schmitt, C. Scheid, J. Viquerat, S. Lanteri.

    3D Simulations of Spatial Dispersive Metals with a Finite Element Time Domain Method, in: Plasmonica 2017, Lecce, Italy, July 2017.


Scientific Books (or Scientific Book chapters)

  • 36S. Lanteri, C. Scheid, M. Klemm, J. Viquerat.

    High order DGTD solver for the numerical modeling of nanoscale light/matter interaction, in: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, M. L. Bittencourt, N. A. Dumont, J. S. Hesthaven (editors), Lecture Notes in Computational Science and Engineering, Springer, 2017, vol. 119, pp. 243-255.


Other Publications

  • 37D. Chiron, C. Scheid.

    Multiple branches of travelling waves for the Gross Pitaevskii equation, December 2017, working paper or preprint.

  • 38V. H. Nguyen, A. Diallo, P. LE THUC, S. Lanteri, G. F. Carle.

    Antenne miniature implantée pour applications RFID UHF, May 2017, 20èmes Journées Nationales Microondes (JNM 2017), Poster.

  • 39V. H. Nguyen, A. Diallo, P. Le Thuc, R. Staraj, S. Lanteri, G. F. Carle.

    Identification sans fil de fantômes de petits animaux intégrant un tag RFID UHF implanté miniature, October 2017, 2 p, Assemblée générale GDR ONDES “Interférences d’Ondes”, Poster.

  • 40G. Pichon, E. Darve, M. Faverge, S. Lanteri, P. Ramet, J. Roman.

    Sparse supernodal solver with low-rank compression for solving the frequency-domain Maxwell equations discretized by a high order HDG method, November 2017, pp. 1-55, Journées jeunes chercheur-e-s - Résolution de problèmes d’ondes harmoniques de grande taille.

  • 41N. Schmitt, C. Scheid, J. Viquerat, S. Lanteri.

    Simulation of three-dimensional nanoscale light interaction with spatially dispersive metals using a high order curvilinear DGTD method, November 2017, working paper or preprint.

  • 42H. Wang, L. Xu, B. Li, S. Descombes, S. Lantéri.

    A new family of exponential-based high order DGTD methods for modelling 3D transient multiscale electromagnetic problems, March 2017, working paper or preprint.

References in notes
  • 43B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 44B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 45C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 46K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 47K. Busch, M. König, J. Niegemann.

    Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
  • 48B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
  • 49A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.

    Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
  • 50J. S. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 51J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 52X. Ji, W. Cai, P. Zhang.

    High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
  • 53J. Niegemann, M. König, K. Stannigel, K. Busch.

    Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
  • 54A. Taflove, S. Hagness.

    Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
  • 55J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
  • 56K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
  • 57Y. Zheng, B. Kiraly, P. Weiss, T. Huang.

    Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.