EN FR
EN FR
Overall Objectives
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography
Overall Objectives
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Bibliography


Section: New Results

A Generic Approach for Escaping Saddle points

A central challenge to using first-order methods for optimizing nonconvex problems is the presence of saddle points. First-order methods often get stuck at saddle points, greatly deteriorating their performance. Typically, to escape from saddles one has to use second-order methods. However, most works on second-order methods rely extensively on expensive Hessian-based computations, making them impractical in large-scale settings. To tackle this challenge, we introduce in [32] a generic framework that minimizes Hessian based computations while at the same time provably converging to second-order critical points. Our framework carefully alternates between a first-order and a second-order subroutine, using the latter only close to saddle points, and yields convergence results competitive to the state-of-the-art. Empirical results suggest that our strategy also enjoys a good practical performance. (Collaboration with Sashank Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola)