Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

Scientific Books (or Scientific Book chapters)

Other Publications

References in notes
  • 14M. Abramowitz, I. A. Stegun (editors)

    Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1992, xiv+1046 p, Reprint of the 1972 edition.
  • 15Computer Algebra Errors, Article in mathematics blog MathOverflow.

  • 16F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (editors)

    NIST Handbook of mathematical functions, Cambridge University Press, 2010.
  • 17M. Armand, B. Grégoire, A. Spiwack, L. Théry.

    Extending Coq with Imperative Features and its Application to SAT Verication, in: Interactive Theorem Proving, international Conference, ITP 2010, Edinburgh, Scotland, July 11–14, 2010, Proceedings, Lecture Notes in Computer Science, Springer, 2010.
  • 18B. Beckermann, G. Labahn.

    A uniform approach for the fast computation of matrix-type Padé approximants, in: SIAM J. Matrix Anal. Appl., 1994, vol. 15, no 3, pp. 804–823.
  • 19A. Benoit, F. Chyzak, A. Darrasse, S. Gerhold, M. Mezzarobba, B. Salvy.

    The Dynamic Dictionary of Mathematical Functions (DDMF), in: The Third International Congress on Mathematical Software (ICMS 2010), K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (editors), Lecture Notes in Computer Science, 2010, vol. 6327, pp. 35–41.

  • 20M. Boespflug, M. Dénès, B. Grégoire.

    Full reduction at full throttle, in: First International Conference on Certified Programs and Proofs, Taiwan, December 7–9, Lecture Notes in Computer Science, Springer, 2011.
  • 21S. Boldo, C. Lelay, G. Melquiond.

    Improving Real Analysis in Coq: A User-Friendly Approach to Integrals and Derivatives, in: Certified Programs and Proofs, C. Hawblitzel, D. Miller (editors), Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, vol. 7679, pp. 289-304.

  • 22S. Boldo, G. Melquiond.

    Flocq: A Unified Library for Proving Floating-point Algorithms in Coq, in: Proceedings of the 20th IEEE Symposium on Computer Arithmetic, Tübingen, Germany, July 2011, pp. 243–252.
  • 23A. Bostan.

    Algorithmes rapides pour les polynômes, séries formelles et matrices, in: Actes des Journées Nationales de Calcul Formel, Luminy, France, 2010, pp. 75–262, Les cours du CIRM, tome 1, numéro 2.

  • 24A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, N. Zenine.

    Globally nilpotent differential operators and the square Ising model, in: J. Phys. A: Math. Theor., 2009, vol. 42, no 12, 50 p.

  • 25A. Bostan, S. Chen, F. Chyzak, Z. Li.

    Complexity of creative telescoping for bivariate rational functions, in: ISSAC'10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, New York, NY, USA, ACM, 2010, pp. 203–210.

  • 26A. Bostan, F. Chyzak, G. Lecerf, B. Salvy, É. Schost.

    Differential equations for algebraic functions, in: ISSAC'07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, C. W. Brown (editor), ACM Press, 2007, pp. 25–32.

  • 27A. Bostan, F. Chyzak, M. van Hoeij, L. Pech.

    Explicit formula for the generating series of diagonal 3D rook paths, in: Sém. Loth. Comb., 2011, vol. B66a, 27 p.

  • 28A. Bostan, L. Dumont, B. Salvy.

    Algebraic Diagonals and Walks, in: ISSAC'15 International Symposium on Symbolic and Algebraic Computation, Bath, United Kingdom, ACM Press, July 2015, pp. 77–84. [ DOI : 10.1145/2755996.2756663 ]

  • 29A. Bostan, M. Kauers.

    The complete generating function for Gessel walks is algebraic, in: Proceedings of the American Mathematical Society, September 2010, vol. 138, no 9, pp. 3063–3078, With an appendix by Mark van Hoeij.
  • 30F. Chyzak.

    An extension of Zeilberger's fast algorithm to general holonomic functions, in: Discrete Math., 2000, vol. 217, no 1-3, pp. 115–134, Formal power series and algebraic combinatorics (Vienna, 1997).
  • 31F. Chyzak, M. Kauers, B. Salvy.

    A Non-Holonomic Systems Approach to Special Function Identities, in: ISSAC'09: Proceedings of the Twenty-Second International Symposium on Symbolic and Algebraic Computation, J. May (editor), 2009, pp. 111–118.

  • 32F. Chyzak, A. Mahboubi, T. Sibut-Pinote, E. Tassi.

    A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3), in: ITP - 5th International Conference on Interactive Theorem Proving, Vienna, Austria, 2014.

  • 33F. Chyzak, B. Salvy.

    Non-commutative elimination in Ore algebras proves multivariate identities, in: J. Symbolic Comput., 1998, vol. 26, no 2, pp. 187–227.
  • 34T. Coquand, G. P. Huet.

    The Calculus of Constructions, in: Inf. Comput., 1988, vol. 76, no 2/3, pp. 95-120.

  • 35T. Coquand, C. Paulin-Mohring.

    Inductively defined types, in: Proceedings of Colog'88, P. Martin-Löf, G. Mints (editors), Lecture Notes in Computer Science, Springer-Verlag, 1990, vol. 417.
  • 36D. Delahaye, M. Mayero.

    Dealing with algebraic expressions over a field in Coq using Maple, in: J. Symbolic Comput., 2005, vol. 39, no 5, pp. 569–592, Special issue on the integration of automated reasoning and computer algebra systems.

  • 37F. Garillot, G. Gonthier, A. Mahboubi, L. Rideau.

    Packaging Mathematical Structures, in: Theorem Proving in Higher-Order Logics, S. Berghofer, T. Nipkow, C. Urban, M. Wenzel (editors), Lecture Notes in Computer Science, Springer, 2009, vol. 5674, pp. 327–342.
  • 38J. von zur. Gathen, J. Gerhard.

    Modern computer algebra, 2nd, Cambridge University Press, New York, 2003, xiv+785 p.
  • 39G. Gonthier.

    Formal proofs—the four-colour theorem, in: Notices of the AMS, 2008, vol. 55, no 11, pp. 1382-1393.
  • 40G. Gonthier, A. Mahboubi.

    An introduction to small scale reflection in Coq, in: Journal of Formalized Reasoning, 2010, vol. 3, no 2, pp. 95–152.
  • 41G. Gonthier, A. Mahboubi, E. Tassi.

    A Small Scale Reflection Extension for the Coq system, Inria, 2008, no RR-6455.

  • 42G. Gonthier, E. Tassi.

    A language of patterns for subterm selection, in: ITP, LNCS, 2012, vol. 7406, pp. 361–376.
  • 43B. Grégoire, A. Mahboubi.

    Proving Equalities in a Commutative Ring Done Right in Coq, in: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, Lecture Notes in Computer Science, Springer, 2005, vol. 3603, pp. 98–113.
  • 44T. Hales.

    Formal proof, in: Notices of the AMS, 2008, vol. 55, no 11, pp. 1370-1380.
  • 45J. Harrison.

    A HOL Theory of Euclidean space, in: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, J. Hurd, T. Melham (editors), Lecture Notes in Computer Science, Springer-Verlag, 2005, vol. 3603.
  • 46J. Harrison.

    Formalizing an analytic proof of the prime number theorem, in: Journal of Automated Reasoning, 2009, vol. 43, pp. 243–261, Dedicated to Mike Gordon on the occasion of his 60th birthday.
  • 47J. Harrison.

    Theorem proving with the real numbers, CPHC/BCS distinguished dissertations, Springer, 1998.
  • 48J. Harrison.

    A Machine-Checked Theory of Floating Point Arithmetic, in: Theorem Proving in Higher Order Logics: 12th International Conference, TPHOLs'99, Nice, France, Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, L. Théry (editors), Lecture Notes in Computer Science, Springer-Verlag, 1999, vol. 1690, pp. 113–130.
  • 49J. Harrison, L. Théry.

    A Skeptic's Approach to Combining HOL and Maple, in: J. Autom. Reason., December 1998, vol. 21, no 3, pp. 279–294.

  • 50F. Johansson.

    Another Mathematica bug, Article on personal blog.

  • 51C. Koutschan.

    A fast approach to creative telescoping, in: Math. Comput. Sci., 2010, vol. 4, no 2-3, pp. 259–266.

  • 52A. Mahboubi.

    Implementing the cylindrical algebraic decomposition within the Coq system, in: Mathematical Structures in Computer Science, 2007, vol. 17, no 1, pp. 99–127.
  • 53R. Matuszewski, P. Rudnicki.

    Mizar: the first 30 years, in: Mechanized Mathematics and Its Applications, 2005, vol. 4.
  • 54M. Mayero.

    Problèmes critiques et preuves formelles, Université Paris 13, novembre 2012, Habilitation à Diriger des Recherches.
  • 55M. Mezzarobba.

    NumGfun: a package for numerical and analytic computation and D-finite functions, in: ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, New York, ACM, 2010, pp. 139–146.

  • 56P. Paule, M. Schorn.

    A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities, in: J. Symbolic Comput., 1995, vol. 20, no 5-6, pp. 673–698, Symbolic computation in combinatorics Δ1 (Ithaca, NY, 1993).

  • 57B. Petersen.

    Maple, Personal web site.
  • 58P. Rudnicki, A. Trybulec.

    On the Integrity of a Repository of Formalized Mathematics, in: Proceedings of the Second International Conference on Mathematical Knowledge Management, London, UK, MKM '03, Springer-Verlag, 2003, pp. 162–174.

  • 59B. Salvy, P. Zimmermann.

    Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, in: ACM Trans. Math. Software, 1994, vol. 20, no 2, pp. 163–177.
  • 60N. J. A. Sloane, S. Plouffe.

    The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995.
  • 61The Coq Development Team.

    The Coq Proof Assistant: Reference Manual.

  • 62The Mathematical Component Team.

    A Formalization of the Odd Order Theorem using the Coq proof assistant, September 2012.

  • 63L. Théry.

    A Machine-Checked Implementation of Buchberger's Algorithm, in: J. Autom. Reasoning, 2001, vol. 26, no 2, pp. 107-137.

  • 64K. Wegschaider.

    Computer generated proofs of binomial multi-sum identities, RISC, J. Kepler University, May 1997, 99 p.
  • 65S. Wolfram.

    Mathematica: A system for doing mathematics by computer (2nd ed.), Addison-Wesley, 1992, I p.
  • 66D. Zeilberger.

    Opinion 94: The Human Obsession With “Formal Proofs” is a Waste of the Computer's Time, and, Even More Regretfully, of Humans' Time, 2009.

  • 67D. Zeilberger.

    A holonomic systems approach to special functions identities, in: J. Comput. Appl. Math., 1990, vol. 32, no 3, pp. 321–368.
  • 68D. Zeilberger.

    The method of creative telescoping, in: J. Symbolic Comput., 1991, vol. 11, no 3, pp. 195–204.