Bibliography
Publications of the year
Articles in International Peer-Reviewed Journals
-
1X. Antoine, C. Besse, R. Duboscq, V. Rispoli.
Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations, in: Computer Physics Communications, 2017, vol. 219, pp. 70-78.
https://hal.archives-ouvertes.fr/hal-01356227 -
2X. Antoine, F. Hou, E. Lorin.
Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2018, forthcoming.
https://hal.archives-ouvertes.fr/hal-01431866 -
3X. Antoine, A. Levitt, Q. Tang.
Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method, in: Journal of Computational Physics, August 2017, vol. 343, pp. 92-109, https://arxiv.org/abs/1611.02045. [ DOI : 10.1016/j.jcp.2017.04.040 ]
https://hal.archives-ouvertes.fr/hal-01393094 -
4X. Antoine, E. Lorin.
An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations, in: Numerische Mathematik, 2017, vol. 137, no 4, pp. 923-958, soumis, forthcoming.
https://hal.archives-ouvertes.fr/hal-01244513 -
5X. Antoine, E. Lorin.
Computational performance of simple and efficient sequential and parallel Dirac equation solvers, in: Computer Physics Communications, 2017, vol. 220, pp. 150-172.
https://hal.archives-ouvertes.fr/hal-01496817 -
6X. Antoine, E. Lorin, Q. Tang.
A Friendly Review of Absorbing Boundary Conditions and Perfectly Matched Layers for Classical and Relativistic Quantum Waves Equations, in: Molecular Physics, 2017, vol. 115, no 15-16, pp. 1861-1879.
https://hal.archives-ouvertes.fr/hal-01374183 -
7M. Badra, T. Takahashi.
Feedback boundary stabilization of 2d fluid-structure interaction systems, in: Discrete and Continuous Dynamical Systems - Series A, 2017.
https://hal.archives-ouvertes.fr/hal-01370000 -
8N. Burq, D. Dos Santos Ferreira, K. Krupchyk.
From semiclassical Strichartz estimates to uniform resolvent estimates on compact manifolds, in: International Mathematical Research Notices, 2017, https://arxiv.org/abs/1507.02307.
https://hal.archives-ouvertes.fr/hal-01251701 -
9L. Bălilescu, J. San Martín, T. Takahashi.
Fluid-structure interaction system with Coulomb's law, in: SIAM Journal on Mathematical Analysis, 2017.
https://hal.archives-ouvertes.fr/hal-01386574 -
10L. Bălilescu, J. San Martín, T. Takahashi.
On the Navier–Stokes system with the Coulomb friction law boundary condition, in: Zeitschrift für Angewandte Mathematik und Physik, 2017.
https://hal.archives-ouvertes.fr/hal-01393709 -
11T. Hishida, A. L. Silvestre, T. Takahashi.
A boundary control problem for the steady self-propelled motion of a rigid body in a Navier-Stokes fluid, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 2017.
https://hal.archives-ouvertes.fr/hal-01205210 -
12C. Lacave, T. Takahashi.
Small moving rigid body into a viscous incompressible fluid, in: Archive for Rational Mechanics and Analysis, 2017, vol. 223, no 3, pp. 1307–1335, https://arxiv.org/abs/1506.08964. [ DOI : 10.1007/s00205-016-1058-z ]
https://hal.archives-ouvertes.fr/hal-01169436 -
13D. Maity, T. Takahashi, M. Tucsnak.
Analysis of a System Modelling The Motion of a Piston in a Viscous Gas, in: Journal of Mathematical Fluid Mechanics, 2017.
https://hal.archives-ouvertes.fr/hal-01285089 -
14M. Oumoun, L. Maniar, J.-C. Vivalda.
On the stabilization of quadratic nonlinear systems, in: European Journal of Control, May 2017, vol. 35, no Supplement C, 6 p. [ DOI : 10.1016/j.ejcon.2017.03.001 ]
https://hal.inria.fr/hal-01590336 -
15J. San Martin, E. L. Schwindt, T. Takahashi.
Reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid, in: Journal of Inverse and Ill-posed Problems, 2017.
https://hal.archives-ouvertes.fr/hal-01241112 -
16T. Takahashi.
Boundary local null controllability of the Kuramoto-Sivashinsky equation, in: Mathematics of Control, Signals, and Systems, 2017.
https://hal.archives-ouvertes.fr/hal-01373201 -
17Q. Tang, Y. Zhang, N. Mauser.
A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates, in: Computer Physics Communications, 2017, vol. 219, pp. 223-235, https://arxiv.org/abs/1609.09039. [ DOI : 10.1016/j.cpc.2017.05.022 ]
https://hal.archives-ouvertes.fr/hal-01377235
Other Publications
-
18S. Ammar, J.-C. Vivalda, M. Massaoud.
Genericity of the strong observability for sampled, November 2017, working paper or preprint.
https://hal.inria.fr/hal-01630461 -
19L. Baudouin, E. Crépeau, J. Valein.
Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback, November 2017, working paper or preprint.
https://hal.laas.fr/hal-01643321 -
20N. Boussaid, M. Caponigro, T. Chambrion.
On the Ball–Marsden–Slemrod obstruction in bilinear control systems, June 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01537743 -
21N. Boussaid, M. Caponigro, T. Chambrion.
Regular propagators of bilinear quantum systems, 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01016299 -
22T. Chambrion, G. Millérioux.
Hybrid control for low-regular nonlinear systems: application to an embedded control for an electric vehicle, July 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01567396 -
23A. Duca.
Construction of the control function for the global exact controllability and further estimates, October 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01520173 -
24A. Duca.
Simultaneous global exact controllability in projection, November 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01481873 -
25B. H. Haak, D. Maity, T. Takahashi, M. Tucsnak.
Mathematical Analysis of the Motion of a Rigid Body in a Compressible Navier-Stokes-Fourier Fluid, October 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01619647 -
26J. Lohéac, T. Takahashi.
Controllability of low Reynolds numbers swimmers of ciliate type, July 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01569856 -
27S. Micu, T. Takahashi.
Local controllability to stationary trajectories of a one-dimensional simplified model arising in turbulence, August 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01572317 -
28A. Munnier, K. Ramdani.
Calderón cavities inverse problem as a shape-from-moments problem, 2017, working paper or preprint.
https://hal.inria.fr/hal-01503425 -
29K. Ramdani, J. Valein, J.-C. Vivalda.
Adaptive observer for age-structured population with spatial diffusion, February 2017, working paper or preprint.
https://hal.inria.fr/hal-01469488 -
30A. Roy, T. Takahashi.
Local null controllability of a rigid body moving into a boussinesq flow, August 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01572508 -
31J.-F. Scheid, J. Sokolowski.
Shape optimization for a fluid-elasticity system, March 2017, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01449478
-
32C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak.
Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1632-1659. -
33X. Antoine, K. Ramdani, B. Thierry.
Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, in: Journal of Algorithms & Computational Technologies, 2012, vol. 6, no 2, pp. 241–259. -
34X. Antoine, C. Geuzaine, K. Ramdani.
Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structures Calculations, in: Wave Propagation in Periodic Media, Progress in Computational Physics, Vol. 1, Bentham, 2010, pp. 73-107. -
35D. Auroux, J. Blum.
A nudging-based data assimilation method : the Back and Forth Nudging (BFN) algorithm, in: Nonlin. Proc. Geophys., 2008, vol. 15, no 305-319. -
36M. I. Belishev, S. A. Ivanov.
Reconstruction of the parameters of a system of connected beams from dynamic boundary measurements, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, vol. 324, no Mat. Vopr. Teor. Rasprostr. Voln. 34, pp. 20–42, 262. -
37M. Bellassoued, D. Dos Santos Ferreira.
Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, in: Inverse Probl. Imaging, 2011, vol. 5, no 4, pp. 745–773.
http://dx.doi.org/10.3934/ipi.2011.5.745 -
38M. Bellassoued, D. D. S. Ferreira.
Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, in: Inverse Problems, 2010, vol. 26, no 12, 125010, 30 p.
http://dx.doi.org/10.1088/0266-5611/26/12/125010 -
39Y. Boubendir, X. Antoine, C. Geuzaine.
A Quasi-Optimal Non-Overlapping Domain Decomposition Algorithm for the Helmholtz Equation, in: Journal of Computational Physics, 2012, vol. 2, no 231, pp. 262-280. -
40M. Boulakia.
Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 11, pp. 1515–1554.
http://dx.doi.org/10.1016/j.matpur.2005.08.004 -
41M. Boulakia, S. Guerrero.
Regular solutions of a problem coupling a compressible fluid and an elastic structure, in: J. Math. Pures Appl. (9), 2010, vol. 94, no 4, pp. 341–365.
http://dx.doi.org/10.1016/j.matpur.2010.04.002 -
42M. Boulakia, A. Osses.
Local null controllability of a two-dimensional fluid-structure interaction problem, in: ESAIM Control Optim. Calc. Var., 2008, vol. 14, no 1, pp. 1–42.
http://dx.doi.org/10.1051/cocv:2007031 -
43M. Boulakia, E. Schwindt, T. Takahashi.
Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, in: Interfaces Free Bound., 2012, vol. 14, no 3, pp. 273–306.
http://dx.doi.org/10.4171/IFB/282 -
44G. Bruckner, M. Yamamoto.
Determination of point wave sources by pointwise observations: stability and reconstruction, in: Inverse Problems, 2000, vol. 16, no 3, pp. 723–748. -
45A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont.
Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, in: J. Math. Fluid Mech., 2005, vol. 7, no 3, pp. 368–404.
http://dx.doi.org/10.1007/s00021-004-0121-y -
46C. Choi, G. Nakamura, K. Shirota.
Variational approach for identifying a coefficient of the wave equation, in: Cubo, 2007, vol. 9, no 2, pp. 81–101. -
47C. Conca, J. San Martín, M. Tucsnak.
Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, in: Comm. Partial Differential Equations, 2000, vol. 25, no 5-6, pp. 1019–1042.
http://dx.doi.org/10.1080/03605300008821540 -
48D. Coutand, S. Shkoller.
Motion of an elastic solid inside an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2005, vol. 176, no 1, pp. 25–102.
http://dx.doi.org/10.1007/s00205-004-0340-7 -
49D. Coutand, S. Shkoller.
The interaction between quasilinear elastodynamics and the Navier-Stokes equations, in: Arch. Ration. Mech. Anal., 2006, vol. 179, no 3, pp. 303–352.
http://dx.doi.org/10.1007/s00205-005-0385-2 -
50B. Desjardins, M. J. Esteban.
On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, in: Comm. Partial Differential Equations, 2000, vol. 25, no 7-8, pp. 1399–1413.
http://dx.doi.org/10.1080/03605300008821553 -
51B. Desjardins, M. J. Esteban.
Existence of weak solutions for the motion of rigid bodies in a viscous fluid, in: Arch. Ration. Mech. Anal., 1999, vol. 146, no 1, pp. 59–71.
http://dx.doi.org/10.1007/s002050050136 -
52B. Desjardins, M. J. Esteban, C. Grandmont, P. Le Tallec.
Weak solutions for a fluid-elastic structure interaction model, in: Rev. Mat. Complut., 2001, vol. 14, no 2, pp. 523–538. -
53A. El Badia, T. Ha-Duong.
Determination of point wave sources by boundary measurements, in: Inverse Problems, 2001, vol. 17, no 4, pp. 1127–1139. -
54M. El Bouajaji, X. Antoine, C. Geuzaine.
Approximate Local Magnetic-to-Electric Surface Operators for Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 15, no 279, pp. 241-260. -
55M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine.
A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations, in: Journal of Computational Physics, 2015, vol. 294, no 1, pp. 38-57. [ DOI : 10.1016/j.jcp.2015.03.041 ]
https://hal.archives-ouvertes.fr/hal-01095566 -
56E. Feireisl.
On the motion of rigid bodies in a viscous compressible fluid, in: Arch. Ration. Mech. Anal., 2003, vol. 167, no 4, pp. 281–308.
http://dx.doi.org/10.1007/s00205-002-0242-5 -
57E. Feireisl.
On the motion of rigid bodies in a viscous incompressible fluid, in: J. Evol. Equ., 2003, vol. 3, no 3, pp. 419–441, Dedicated to Philippe Bénilan.
http://dx.doi.org/10.1007/s00028-003-0110-1 -
58E. Feireisl, M. Hillairet, Š. Nečasová.
On the motion of several rigid bodies in an incompressible non-Newtonian fluid, in: Nonlinearity, 2008, vol. 21, no 6, pp. 1349–1366.
http://dx.doi.org/10.1088/0951-7715/21/6/012 -
59E. Fridman.
Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method, in: Automatica, 2013, vol. 49, no 7, pp. 2250 - 2260. -
60G. P. Galdi, A. L. Silvestre.
On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, in: Indiana Univ. Math. J., 2009, vol. 58, no 6, pp. 2805–2842.
http://dx.doi.org/10.1512/iumj.2009.58.3758 -
61O. Glass, F. Sueur.
The movement of a solid in an incompressible perfect fluid as a geodesic flow, in: Proc. Amer. Math. Soc., 2012, vol. 140, no 6, pp. 2155–2168.
http://dx.doi.org/10.1090/S0002-9939-2011-11219-X -
62C. Grandmont, Y. Maday.
Existence for an unsteady fluid-structure interaction problem, in: M2AN Math. Model. Numer. Anal., 2000, vol. 34, no 3, pp. 609–636.
http://dx.doi.org/10.1051/m2an:2000159 -
63G. Haine.
Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator, in: Mathematics of Control, Signals, and Systems, 2014, vol. 26, no 3, pp. 435-462. -
64G. Haine, K. Ramdani.
Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, in: Numer. Math., 2012, vol. 120, no 2, pp. 307-343. -
65J. Houot, A. Munnier.
On the motion and collisions of rigid bodies in an ideal fluid, in: Asymptot. Anal., 2008, vol. 56, no 3-4, pp. 125–158. -
66O. Y. Imanuvilov, T. Takahashi.
Exact controllability of a fluid-rigid body system, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 4, pp. 408–437.
http://dx.doi.org/10.1016/j.matpur.2007.01.005 -
67V. Isakov.
Inverse problems for partial differential equations, Applied Mathematical Sciences, Second, Springer, New York, 2006, vol. 127. -
68N. V. Judakov.
The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, in: Dinamika Splošn. Sredy, 1974, no Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 249–253, 255. -
69B. Kaltenbacher, A. Neubauer, O. Scherzer.
Iterative regularization methods for nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, vol. 6. -
70G. Legendre, T. Takahashi.
Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation, in: M2AN Math. Model. Numer. Anal., 2008, vol. 42, no 4, pp. 609–644.
http://dx.doi.org/10.1051/m2an:2008020 -
71J. Lequeurre.
Existence of strong solutions to a fluid-structure system, in: SIAM J. Math. Anal., 2011, vol. 43, no 1, pp. 389–410.
http://dx.doi.org/10.1137/10078983X -
72D. Luenberger.
Observing the state of a linear system, in: IEEE Trans. Mil. Electron., 1964, vol. MIL-8, pp. 74-80. -
73P. Moireau, D. Chapelle, P. Le Tallec.
Joint state and parameter estimation for distributed mechanical systems, in: Computer Methods in Applied Mechanics and Engineering, 2008, vol. 197, pp. 659–677. -
74A. Munnier, B. Pinçon.
Locomotion of articulated bodies in an ideal fluid: 2D model with buoyancy, circulation and collisions, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1899–1940.
http://dx.doi.org/10.1142/S0218202510004829 -
75A. Munnier, K. Ramdani.
Conformal mapping for cavity inverse problem: an explicit reconstruction formula, in: Applicable Analysis, 2016. [ DOI : 10.1080/00036811.2016.1208816 ]
https://hal.inria.fr/hal-01196111 -
76A. Munnier, E. Zuazua.
Large time behavior for a simplified -dimensional model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2005, vol. 30, no 1-3, pp. 377–417.
http://dx.doi.org/10.1081/PDE-200050080 -
77J. O'Reilly.
Observers for linear systems, Mathematics in Science and Engineering, Academic Press Inc., Orlando, FL, 1983, vol. 170. -
78J. Ortega, L. Rosier, T. Takahashi.
On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 1, pp. 139–165.
http://dx.doi.org/10.1016/j.anihpc.2005.12.004 -
79K. Ramdani, M. Tucsnak, J. Valein.
Detectability and state estimation for linear age-structured population diffusion models, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2016, vol. 50, no 6, pp. 1731-1761. [ DOI : 10.1051/m2an/2016002 ]
https://hal.inria.fr/hal-01140166 -
80K. Ramdani, M. Tucsnak, G. Weiss.
Recovering the initial state of an infinite-dimensional system using observers, in: Automatica, 2010, vol. 46, no 10, pp. 1616-1625. -
81J.-P. Raymond.
Feedback stabilization of a fluid-structure model, in: SIAM J. Control Optim., 2010, vol. 48, no 8, pp. 5398–5443.
http://dx.doi.org/10.1137/080744761 -
82J. San Martín, J.-F. Scheid, L. Smaranda.
A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density, in: Numer. Math., 2012, vol. 122, no 2, pp. 341–382.
http://dx.doi.org/10.1007/s00211-012-0460-1 -
83J. San Martín, J.-F. Scheid, L. Smaranda.
The Lagrange-Galerkin method for fluid-structure interaction problems, in: Boundary Value Problems., 2013, pp. 213–246. -
84J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, in: SIAM J. Numer. Anal., 2005, vol. 43, no 4, pp. 1536–1571 (electronic).
http://dx.doi.org/10.1137/S0036142903438161 -
85J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.
An initial and boundary value problem modeling of fish-like swimming, in: Arch. Ration. Mech. Anal., 2008, vol. 188, no 3, pp. 429–455.
http://dx.doi.org/10.1007/s00205-007-0092-2 -
86J. San Martín, L. Smaranda, T. Takahashi.
Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, in: J. Comput. Appl. Math., 2009, vol. 230, no 2, pp. 521–545.
http://dx.doi.org/10.1016/j.cam.2008.12.021 -
87J. San Martín, V. Starovoitov, M. Tucsnak.
Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2002, vol. 161, no 2, pp. 113–147.
http://dx.doi.org/10.1007/s002050100172 -
88D. Serre.
Chute libre d'un solide dans un fluide visqueux incompressible. Existence, in: Japan J. Appl. Math., 1987, vol. 4, no 1, pp. 99–110.
http://dx.doi.org/10.1007/BF03167757 -
89P. Stefanov, G. Uhlmann.
Thermoacoustic tomography with variable sound speed, in: Inverse Problems, 2009, vol. 25, no 7, 16 p, 075011. -
90T. Takahashi.
Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, in: Adv. Differential Equations, 2003, vol. 8, no 12, pp. 1499–1532. -
91H. Trinh, T. Fernando.
Functional observers for dynamical systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2012, vol. 420. -
92J. L. Vázquez, E. Zuazua.
Large time behavior for a simplified 1D model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2003, vol. 28, no 9-10, pp. 1705–1738.
http://dx.doi.org/10.1081/PDE-120024530 -
93H. F. Weinberger.
On the steady fall of a body in a Navier-Stokes fluid, in: Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Providence, R. I., Amer. Math. Soc., 1973, pp. 421–439.