EN FR
EN FR


Bibliography

Publications of the year

Articles in International Peer-Reviewed Journals

  • 1X. Antoine, C. Besse, R. Duboscq, V. Rispoli.

    Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations, in: Computer Physics Communications, 2017, vol. 219, pp. 70-78.

    https://hal.archives-ouvertes.fr/hal-01356227
  • 2X. Antoine, F. Hou, E. Lorin.

    Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2018, forthcoming.

    https://hal.archives-ouvertes.fr/hal-01431866
  • 3X. Antoine, A. Levitt, Q. Tang.

    Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method, in: Journal of Computational Physics, August 2017, vol. 343, pp. 92-109, https://arxiv.org/abs/1611.02045. [ DOI : 10.1016/j.jcp.2017.04.040 ]

    https://hal.archives-ouvertes.fr/hal-01393094
  • 4X. Antoine, E. Lorin.

    An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations, in: Numerische Mathematik, 2017, vol. 137, no 4, pp. 923-958, soumis, forthcoming.

    https://hal.archives-ouvertes.fr/hal-01244513
  • 5X. Antoine, E. Lorin.

    Computational performance of simple and efficient sequential and parallel Dirac equation solvers, in: Computer Physics Communications, 2017, vol. 220, pp. 150-172.

    https://hal.archives-ouvertes.fr/hal-01496817
  • 6X. Antoine, E. Lorin, Q. Tang.

    A Friendly Review of Absorbing Boundary Conditions and Perfectly Matched Layers for Classical and Relativistic Quantum Waves Equations, in: Molecular Physics, 2017, vol. 115, no 15-16, pp. 1861-1879.

    https://hal.archives-ouvertes.fr/hal-01374183
  • 7M. Badra, T. Takahashi.

    Feedback boundary stabilization of 2d fluid-structure interaction systems, in: Discrete and Continuous Dynamical Systems - Series A, 2017.

    https://hal.archives-ouvertes.fr/hal-01370000
  • 8N. Burq, D. Dos Santos Ferreira, K. Krupchyk.

    From semiclassical Strichartz estimates to uniform Lp resolvent estimates on compact manifolds, in: International Mathematical Research Notices, 2017, https://arxiv.org/abs/1507.02307.

    https://hal.archives-ouvertes.fr/hal-01251701
  • 9L. Bălilescu, J. San Martín, T. Takahashi.

    Fluid-structure interaction system with Coulomb's law, in: SIAM Journal on Mathematical Analysis, 2017.

    https://hal.archives-ouvertes.fr/hal-01386574
  • 10L. Bălilescu, J. San Martín, T. Takahashi.

    On the Navier–Stokes system with the Coulomb friction law boundary condition, in: Zeitschrift für Angewandte Mathematik und Physik, 2017.

    https://hal.archives-ouvertes.fr/hal-01393709
  • 11T. Hishida, A. L. Silvestre, T. Takahashi.

    A boundary control problem for the steady self-propelled motion of a rigid body in a Navier-Stokes fluid, in: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, 2017.

    https://hal.archives-ouvertes.fr/hal-01205210
  • 12C. Lacave, T. Takahashi.

    Small moving rigid body into a viscous incompressible fluid, in: Archive for Rational Mechanics and Analysis, 2017, vol. 223, no 3, pp. 1307–1335, https://arxiv.org/abs/1506.08964. [ DOI : 10.1007/s00205-016-1058-z ]

    https://hal.archives-ouvertes.fr/hal-01169436
  • 13D. Maity, T. Takahashi, M. Tucsnak.

    Analysis of a System Modelling The Motion of a Piston in a Viscous Gas, in: Journal of Mathematical Fluid Mechanics, 2017.

    https://hal.archives-ouvertes.fr/hal-01285089
  • 14M. Oumoun, L. Maniar, J.-C. Vivalda.

    On the stabilization of quadratic nonlinear systems, in: European Journal of Control, May 2017, vol. 35, no Supplement C, 6 p. [ DOI : 10.1016/j.ejcon.2017.03.001 ]

    https://hal.inria.fr/hal-01590336
  • 15J. San Martin, E. L. Schwindt, T. Takahashi.

    Reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid, in: Journal of Inverse and Ill-posed Problems, 2017.

    https://hal.archives-ouvertes.fr/hal-01241112
  • 16T. Takahashi.

    Boundary local null controllability of the Kuramoto-Sivashinsky equation, in: Mathematics of Control, Signals, and Systems, 2017.

    https://hal.archives-ouvertes.fr/hal-01373201
  • 17Q. Tang, Y. Zhang, N. Mauser.

    A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates, in: Computer Physics Communications, 2017, vol. 219, pp. 223-235, https://arxiv.org/abs/1609.09039. [ DOI : 10.1016/j.cpc.2017.05.022 ]

    https://hal.archives-ouvertes.fr/hal-01377235

Other Publications

References in notes
  • 32C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak.

    Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, in: SIAM J. Control Optim., 2009, vol. 48, no 3, pp. 1632-1659.
  • 33X. Antoine, K. Ramdani, B. Thierry.

    Wide Frequency Band Numerical Approaches for Multiple Scattering Problems by Disks, in: Journal of Algorithms & Computational Technologies, 2012, vol. 6, no 2, pp. 241–259.
  • 34X. Antoine, C. Geuzaine, K. Ramdani.

    Computational Methods for Multiple Scattering at High Frequency with Applications to Periodic Structures Calculations, in: Wave Propagation in Periodic Media, Progress in Computational Physics, Vol. 1, Bentham, 2010, pp. 73-107.
  • 35D. Auroux, J. Blum.

    A nudging-based data assimilation method : the Back and Forth Nudging (BFN) algorithm, in: Nonlin. Proc. Geophys., 2008, vol. 15, no 305-319.
  • 36M. I. Belishev, S. A. Ivanov.

    Reconstruction of the parameters of a system of connected beams from dynamic boundary measurements, in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, vol. 324, no Mat. Vopr. Teor. Rasprostr. Voln. 34, pp. 20–42, 262.
  • 37M. Bellassoued, D. Dos Santos Ferreira.

    Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, in: Inverse Probl. Imaging, 2011, vol. 5, no 4, pp. 745–773.

    http://dx.doi.org/10.3934/ipi.2011.5.745
  • 38M. Bellassoued, D. D. S. Ferreira.

    Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, in: Inverse Problems, 2010, vol. 26, no 12, 125010, 30 p.

    http://dx.doi.org/10.1088/0266-5611/26/12/125010
  • 39Y. Boubendir, X. Antoine, C. Geuzaine.

    A Quasi-Optimal Non-Overlapping Domain Decomposition Algorithm for the Helmholtz Equation, in: Journal of Computational Physics, 2012, vol. 2, no 231, pp. 262-280.
  • 40M. Boulakia.

    Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, in: J. Math. Pures Appl. (9), 2005, vol. 84, no 11, pp. 1515–1554.

    http://dx.doi.org/10.1016/j.matpur.2005.08.004
  • 41M. Boulakia, S. Guerrero.

    Regular solutions of a problem coupling a compressible fluid and an elastic structure, in: J. Math. Pures Appl. (9), 2010, vol. 94, no 4, pp. 341–365.

    http://dx.doi.org/10.1016/j.matpur.2010.04.002
  • 42M. Boulakia, A. Osses.

    Local null controllability of a two-dimensional fluid-structure interaction problem, in: ESAIM Control Optim. Calc. Var., 2008, vol. 14, no 1, pp. 1–42.

    http://dx.doi.org/10.1051/cocv:2007031
  • 43M. Boulakia, E. Schwindt, T. Takahashi.

    Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid, in: Interfaces Free Bound., 2012, vol. 14, no 3, pp. 273–306.

    http://dx.doi.org/10.4171/IFB/282
  • 44G. Bruckner, M. Yamamoto.

    Determination of point wave sources by pointwise observations: stability and reconstruction, in: Inverse Problems, 2000, vol. 16, no 3, pp. 723–748.
  • 45A. Chambolle, B. Desjardins, M. J. Esteban, C. Grandmont.

    Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, in: J. Math. Fluid Mech., 2005, vol. 7, no 3, pp. 368–404.

    http://dx.doi.org/10.1007/s00021-004-0121-y
  • 46C. Choi, G. Nakamura, K. Shirota.

    Variational approach for identifying a coefficient of the wave equation, in: Cubo, 2007, vol. 9, no 2, pp. 81–101.
  • 47C. Conca, J. San Martín, M. Tucsnak.

    Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, in: Comm. Partial Differential Equations, 2000, vol. 25, no 5-6, pp. 1019–1042.

    http://dx.doi.org/10.1080/03605300008821540
  • 48D. Coutand, S. Shkoller.

    Motion of an elastic solid inside an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2005, vol. 176, no 1, pp. 25–102.

    http://dx.doi.org/10.1007/s00205-004-0340-7
  • 49D. Coutand, S. Shkoller.

    The interaction between quasilinear elastodynamics and the Navier-Stokes equations, in: Arch. Ration. Mech. Anal., 2006, vol. 179, no 3, pp. 303–352.

    http://dx.doi.org/10.1007/s00205-005-0385-2
  • 50B. Desjardins, M. J. Esteban.

    On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, in: Comm. Partial Differential Equations, 2000, vol. 25, no 7-8, pp. 1399–1413.

    http://dx.doi.org/10.1080/03605300008821553
  • 51B. Desjardins, M. J. Esteban.

    Existence of weak solutions for the motion of rigid bodies in a viscous fluid, in: Arch. Ration. Mech. Anal., 1999, vol. 146, no 1, pp. 59–71.

    http://dx.doi.org/10.1007/s002050050136
  • 52B. Desjardins, M. J. Esteban, C. Grandmont, P. Le Tallec.

    Weak solutions for a fluid-elastic structure interaction model, in: Rev. Mat. Complut., 2001, vol. 14, no 2, pp. 523–538.
  • 53A. El Badia, T. Ha-Duong.

    Determination of point wave sources by boundary measurements, in: Inverse Problems, 2001, vol. 17, no 4, pp. 1127–1139.
  • 54M. El Bouajaji, X. Antoine, C. Geuzaine.

    Approximate Local Magnetic-to-Electric Surface Operators for Time-Harmonic Maxwell's Equations, in: Journal of Computational Physics, 2015, vol. 15, no 279, pp. 241-260.
  • 55M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine.

    A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations, in: Journal of Computational Physics, 2015, vol. 294, no 1, pp. 38-57. [ DOI : 10.1016/j.jcp.2015.03.041 ]

    https://hal.archives-ouvertes.fr/hal-01095566
  • 56E. Feireisl.

    On the motion of rigid bodies in a viscous compressible fluid, in: Arch. Ration. Mech. Anal., 2003, vol. 167, no 4, pp. 281–308.

    http://dx.doi.org/10.1007/s00205-002-0242-5
  • 57E. Feireisl.

    On the motion of rigid bodies in a viscous incompressible fluid, in: J. Evol. Equ., 2003, vol. 3, no 3, pp. 419–441, Dedicated to Philippe Bénilan.

    http://dx.doi.org/10.1007/s00028-003-0110-1
  • 58E. Feireisl, M. Hillairet, Š. Nečasová.

    On the motion of several rigid bodies in an incompressible non-Newtonian fluid, in: Nonlinearity, 2008, vol. 21, no 6, pp. 1349–1366.

    http://dx.doi.org/10.1088/0951-7715/21/6/012
  • 59E. Fridman.

    Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method, in: Automatica, 2013, vol. 49, no 7, pp. 2250 - 2260.
  • 60G. P. Galdi, A. L. Silvestre.

    On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, in: Indiana Univ. Math. J., 2009, vol. 58, no 6, pp. 2805–2842.

    http://dx.doi.org/10.1512/iumj.2009.58.3758
  • 61O. Glass, F. Sueur.

    The movement of a solid in an incompressible perfect fluid as a geodesic flow, in: Proc. Amer. Math. Soc., 2012, vol. 140, no 6, pp. 2155–2168.

    http://dx.doi.org/10.1090/S0002-9939-2011-11219-X
  • 62C. Grandmont, Y. Maday.

    Existence for an unsteady fluid-structure interaction problem, in: M2AN Math. Model. Numer. Anal., 2000, vol. 34, no 3, pp. 609–636.

    http://dx.doi.org/10.1051/m2an:2000159
  • 63G. Haine.

    Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator, in: Mathematics of Control, Signals, and Systems, 2014, vol. 26, no 3, pp. 435-462.
  • 64G. Haine, K. Ramdani.

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations, in: Numer. Math., 2012, vol. 120, no 2, pp. 307-343.
  • 65J. Houot, A. Munnier.

    On the motion and collisions of rigid bodies in an ideal fluid, in: Asymptot. Anal., 2008, vol. 56, no 3-4, pp. 125–158.
  • 66O. Y. Imanuvilov, T. Takahashi.

    Exact controllability of a fluid-rigid body system, in: J. Math. Pures Appl. (9), 2007, vol. 87, no 4, pp. 408–437.

    http://dx.doi.org/10.1016/j.matpur.2007.01.005
  • 67V. Isakov.

    Inverse problems for partial differential equations, Applied Mathematical Sciences, Second, Springer, New York, 2006, vol. 127.
  • 68N. V. Judakov.

    The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, in: Dinamika Splošn. Sredy, 1974, no Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 249–253, 255.
  • 69B. Kaltenbacher, A. Neubauer, O. Scherzer.

    Iterative regularization methods for nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008, vol. 6.
  • 70G. Legendre, T. Takahashi.

    Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation, in: M2AN Math. Model. Numer. Anal., 2008, vol. 42, no 4, pp. 609–644.

    http://dx.doi.org/10.1051/m2an:2008020
  • 71J. Lequeurre.

    Existence of strong solutions to a fluid-structure system, in: SIAM J. Math. Anal., 2011, vol. 43, no 1, pp. 389–410.

    http://dx.doi.org/10.1137/10078983X
  • 72D. Luenberger.

    Observing the state of a linear system, in: IEEE Trans. Mil. Electron., 1964, vol. MIL-8, pp. 74-80.
  • 73P. Moireau, D. Chapelle, P. Le Tallec.

    Joint state and parameter estimation for distributed mechanical systems, in: Computer Methods in Applied Mechanics and Engineering, 2008, vol. 197, pp. 659–677.
  • 74A. Munnier, B. Pinçon.

    Locomotion of articulated bodies in an ideal fluid: 2D model with buoyancy, circulation and collisions, in: Math. Models Methods Appl. Sci., 2010, vol. 20, no 10, pp. 1899–1940.

    http://dx.doi.org/10.1142/S0218202510004829
  • 75A. Munnier, K. Ramdani.

    Conformal mapping for cavity inverse problem: an explicit reconstruction formula, in: Applicable Analysis, 2016. [ DOI : 10.1080/00036811.2016.1208816 ]

    https://hal.inria.fr/hal-01196111
  • 76A. Munnier, E. Zuazua.

    Large time behavior for a simplified N-dimensional model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2005, vol. 30, no 1-3, pp. 377–417.

    http://dx.doi.org/10.1081/PDE-200050080
  • 77J. O'Reilly.

    Observers for linear systems, Mathematics in Science and Engineering, Academic Press Inc., Orlando, FL, 1983, vol. 170.
  • 78J. Ortega, L. Rosier, T. Takahashi.

    On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, vol. 24, no 1, pp. 139–165.

    http://dx.doi.org/10.1016/j.anihpc.2005.12.004
  • 79K. Ramdani, M. Tucsnak, J. Valein.

    Detectability and state estimation for linear age-structured population diffusion models, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2016, vol. 50, no 6, pp. 1731-1761. [ DOI : 10.1051/m2an/2016002 ]

    https://hal.inria.fr/hal-01140166
  • 80K. Ramdani, M. Tucsnak, G. Weiss.

    Recovering the initial state of an infinite-dimensional system using observers, in: Automatica, 2010, vol. 46, no 10, pp. 1616-1625.
  • 81J.-P. Raymond.

    Feedback stabilization of a fluid-structure model, in: SIAM J. Control Optim., 2010, vol. 48, no 8, pp. 5398–5443.

    http://dx.doi.org/10.1137/080744761
  • 82J. San Martín, J.-F. Scheid, L. Smaranda.

    A modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density, in: Numer. Math., 2012, vol. 122, no 2, pp. 341–382.

    http://dx.doi.org/10.1007/s00211-012-0460-1
  • 83J. San Martín, J.-F. Scheid, L. Smaranda.

    The Lagrange-Galerkin method for fluid-structure interaction problems, in: Boundary Value Problems., 2013, pp. 213–246.
  • 84J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.

    Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system, in: SIAM J. Numer. Anal., 2005, vol. 43, no 4, pp. 1536–1571 (electronic).

    http://dx.doi.org/10.1137/S0036142903438161
  • 85J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak.

    An initial and boundary value problem modeling of fish-like swimming, in: Arch. Ration. Mech. Anal., 2008, vol. 188, no 3, pp. 429–455.

    http://dx.doi.org/10.1007/s00205-007-0092-2
  • 86J. San Martín, L. Smaranda, T. Takahashi.

    Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time, in: J. Comput. Appl. Math., 2009, vol. 230, no 2, pp. 521–545.

    http://dx.doi.org/10.1016/j.cam.2008.12.021
  • 87J. San Martín, V. Starovoitov, M. Tucsnak.

    Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, in: Arch. Ration. Mech. Anal., 2002, vol. 161, no 2, pp. 113–147.

    http://dx.doi.org/10.1007/s002050100172
  • 88D. Serre.

    Chute libre d'un solide dans un fluide visqueux incompressible. Existence, in: Japan J. Appl. Math., 1987, vol. 4, no 1, pp. 99–110.

    http://dx.doi.org/10.1007/BF03167757
  • 89P. Stefanov, G. Uhlmann.

    Thermoacoustic tomography with variable sound speed, in: Inverse Problems, 2009, vol. 25, no 7, 16 p, 075011.
  • 90T. Takahashi.

    Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, in: Adv. Differential Equations, 2003, vol. 8, no 12, pp. 1499–1532.
  • 91H. Trinh, T. Fernando.

    Functional observers for dynamical systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 2012, vol. 420.
  • 92J. L. Vázquez, E. Zuazua.

    Large time behavior for a simplified 1D model of fluid-solid interaction, in: Comm. Partial Differential Equations, 2003, vol. 28, no 9-10, pp. 1705–1738.

    http://dx.doi.org/10.1081/PDE-120024530
  • 93H. F. Weinberger.

    On the steady fall of a body in a Navier-Stokes fluid, in: Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Providence, R. I., Amer. Math. Soc., 1973, pp. 421–439.