FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies


Bibliography

Publications of the year

Doctoral Dissertations and Habilitation Theses

Articles in International Peer-Reviewed Journals

International Conferences with Proceedings

  • 29J. Orłowski, A. Chaillet, M. Sigalotti, A. Destexhe.

    Adaptive scheme for pathological oscillations disruption in a delayed neuronal population model, in: 57th IEEE Conference on Decision and Control, Miami Beach, United States, Proceedings of the 57th IEEE Conference on Decision and Control, December 2018.

    https://hal-centralesupelec.archives-ouvertes.fr/hal-01956472

Conferences without Proceedings

  • 30J.-M. Coron, F. Marbach, F. Sueur, P. Zhang.

    On the controllability of the Navier-Stokes equation in a rectangle, with a little help of a distributed phantom force, in: Journées EDP, Obernai, France, June 2018.

    https://hal.archives-ouvertes.fr/hal-01970878

Scientific Books (or Scientific Book chapters)

Scientific Popularization

Other Publications

References in notes
  • 60D. Barilari, U. Boscain, M. Sigalotti (editors)

    Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2016, vi+324 p, Lecture notes from the IHP Trimester held at the Institut Henri Poincaré, Paris and from the CIRM Summer School “Sub-Riemannian Manifolds: From Geodesics to Hypoelliptic Diffusion” held in Luminy, Fall 2014.

    https://doi.org/10.4171/163
  • 61D. Barilari, U. Boscain, M. Sigalotti (editors)

    Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. II, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2016, viii+299 p, Lecture notes from the IHP Trimester held at the Institut Henri Poincaré, Paris and from the CIRM Summer School “Sub-Riemannian Manifolds: From Geodesics to Hypoelliptic Diffusion” held in Luminy, Fall 2014.

    https://doi.org/10.4171/163
  • 62R. Adami, U. Boscain.

    Controllability of the Schrödinger Equation via Intersection of Eigenvalues, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 1080–1085.
  • 63A. A. Agrachev.

    Some open problems, in: Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., Springer, Cham, 2014, vol. 5, pp. 1–13.
  • 64A. Agrachev, D. Barilari, L. Rizzi.

    Curvature: a variational approach, in: Mem. Amer. Math. Soc., 2018, vol. 256, no 1225, v+142 p.
  • 65A. A. Agrachev, Y. Baryshnikov, D. Liberzon.

    On robust Lie-algebraic stability conditions for switched linear systems, in: Systems Control Lett., 2012, vol. 61, no 2, pp. 347–353.

    https://doi.org/10.1016/j.sysconle.2011.11.016
  • 66A. Agrachev, U. Boscain, J.-P. Gauthier, F. Rossi.

    The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, in: J. Funct. Anal., 2009, vol. 256, no 8, pp. 2621–2655.

    https://doi.org/10.1016/j.jfa.2009.01.006
  • 67A. Agrachev, P. W. Y. Lee.

    Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, in: Math. Ann., 2014, vol. 360, no 1-2, pp. 209–253.

    https://doi.org/10.1007/s00208-014-1034-6
  • 68A. A. Agrachev, Y. L. Sachkov.

    Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.

    https://doi.org/10.1007/978-3-662-06404-7
  • 69L. Ambrosio, N. Gigli, G. Savaré.

    Metric measure spaces with Riemannian Ricci curvature bounded from below, in: Duke Math. J., 2014, vol. 163, no 7, pp. 1405–1490.

    https://doi.org/10.1215/00127094-2681605
  • 70L. Ambrosio, P. Tilli.

    Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004, vol. 25, viii+133 p.
  • 71M. Balde, U. Boscain, P. Mason.

    A note on stability conditions for planar switched systems, in: Internat. J. Control, 2009, vol. 82, no 10, pp. 1882–1888.

    https://doi.org/10.1080/00207170902802992
  • 72F. Baudoin, N. Garofalo.

    Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, in: J. Eur. Math. Soc. (JEMS), 2017, vol. 19, no 1, pp. 151–219.

    https://doi.org/10.4171/JEMS/663
  • 73F. Baudoin, J. Wang.

    Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds, in: Potential Anal., 2014, vol. 40, no 2, pp. 163–193.

    https://doi.org/10.1007/s11118-013-9345-x
  • 74T. Bayen.

    Analytical parameterization of rotors and proof of a Goldberg conjecture by optimal control theory, in: SIAM J. Control Optim., 2008, vol. 47, no 6, pp. 3007–3036. [ DOI : 10.1137/070705325 ]
  • 75K. Beauchard, J.-M. Coron.

    Controllability of a quantum particle in a moving potential well, in: J. Funct. Anal., 2006, vol. 232, no 2, pp. 328–389.
  • 76M. Benaïm, S. Le Borgne, F. Malrieu, P.-A. Zitt.

    Qualitative properties of certain piecewise deterministic Markov processes, in: Ann. Inst. Henri Poincaré Probab. Stat., 2015, vol. 51, no 3, pp. 1040–1075.

    https://doi.org/10.1214/14-AIHP619
  • 77B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis, J. P. Gauthier.

    The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements, in: PLoS Comput. Biol., 2008, vol. 4, no 10, e1000194, 25 p.

    https://doi.org/10.1371/journal.pcbi.1000194
  • 78F. Blanchini.

    Nonquadratic Lyapunov functions for robust control, in: Automatica J. IFAC, 1995, vol. 31, no 3, pp. 451–461.

    http://dx.doi.org/10.1016/0005-1098(94)00133-4
  • 79F. Blanchini, S. Miani.

    A new class of universal Lyapunov functions for the control of uncertain linear systems, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 3, pp. 641–647.

    http://dx.doi.org/10.1109/9.751368
  • 80A. Bonfiglioli, E. Lanconelli, F. Uguzzoni.

    Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, xxvi+800 p.
  • 81M. Born, V. Fock.

    Beweis des adiabatensatzes, in: Zeitschrift für Physik A Hadrons and Nuclei, 1928, vol. 51, no 3–4, pp. 165–180.
  • 82U. Boscain.

    Stability of planar switched systems: the linear single input case, in: SIAM J. Control Optim., 2002, vol. 41, no 1, pp. 89–112. [ DOI : 10.1137/S0363012900382837 ]
  • 83U. Boscain, M. Caponigro, T. Chambrion, M. Sigalotti.

    A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, in: Comm. Math. Phys., 2012, vol. 311, no 2, pp. 423–455.

    https://doi.org/10.1007/s00220-012-1441-z
  • 84U. Boscain, M. Caponigro, M. Sigalotti.

    Multi-input Schrödinger equation: controllability, tracking, and application to the quantum angular momentum, in: J. Differential Equations, 2014, vol. 256, no 11, pp. 3524–3551.

    https://doi.org/10.1016/j.jde.2014.02.004
  • 85U. Boscain, G. Charlot, M. Sigalotti.

    Stability of planar nonlinear switched systems, in: Discrete Contin. Dyn. Syst., 2006, vol. 15, no 2, pp. 415–432.

    https://doi.org/10.3934/dcds.2006.15.415
  • 86U. Boscain, R. A. Chertovskih, J. P. Gauthier, A. O. Remizov.

    Hypoelliptic diffusion and human vision: a semidiscrete new twist, in: SIAM J. Imaging Sci., 2014, vol. 7, no 2, pp. 669–695. [ DOI : 10.1137/130924731 ]
  • 87U. Boscain, F. Chittaro, P. Mason, M. Sigalotti.

    Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues, in: IEEE Trans. Automat. Control, 2012, vol. 57, no 8, pp. 1970–1983.
  • 88U. Boscain, J. Duplaix, J.-P. Gauthier, F. Rossi.

    Anthropomorphic image reconstruction via hypoelliptic diffusion, in: SIAM J. Control Optim., 2012, vol. 50, no 3, pp. 1309–1336. [ DOI : 10.1137/11082405X ]
  • 89M. S. Branicky.

    Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, in: IEEE Trans. Automat. Control, 1998, vol. 43, no 4, pp. 475–482, Hybrid control systems.

    https://doi.org/10.1109/9.664150
  • 90R. W. Brockett.

    System theory on group manifolds and coset spaces, in: SIAM J. Control, 1972, vol. 10, pp. 265–284.
  • 91F. Bullo, A. D. Lewis.

    Geometric control of mechanical systems, Texts in Applied Mathematics, Springer-Verlag, New York, 2005, vol. 49, xxiv+726 p, Modeling, analysis, and design for simple mechanical control systems. [ DOI : 10.1007/978-1-4899-7276-7 ]
  • 92C. Carathéodory.

    Untersuchungen über die Grundlagen der Thermodynamik, in: Math. Ann., 1909, vol. 67, no 3, pp. 355–386.

    https://doi.org/10.1007/BF01450409
  • 93E. Cartan.

    Sur la represéntation géométrique des systèmes matériels non holonomes, in: Proceedings of the International Congress of Mathematicians. Volume 4., 1928, pp. 253–261.
  • 94T. Chambrion, P. Mason, M. Sigalotti, U. Boscain.

    Controllability of the discrete-spectrum Schrödinger equation driven by an external field, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 1, pp. 329–349.

    https://doi.org/10.1016/j.anihpc.2008.05.001
  • 95G. Citti, A. Sarti.

    A cortical based model of perceptual completion in the roto-translation space, in: J. Math. Imaging Vision, 2006, vol. 24, no 3, pp. 307–326.

    http://dx.doi.org/10.1007/s10851-005-3630-2
  • 96F. Colonius, G. Mazanti.

    Decay rates for stabilization of linear continuous-time systems with random switching, in: Math. Control Relat. Fields, 2019.
  • 97J.-M. Coron.

    Control and nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007, vol. 136, xiv+426 p.
  • 98J.-M. Coron.

    On the controllability of nonlinear partial differential equations, in: Proceedings of the International Congress of Mathematicians. Volume I, Hindustan Book Agency, New Delhi, 2010, pp. 238–264.
  • 99J.-M. Coron.

    Global asymptotic stabilization for controllable systems without drift, in: Math. Control Signals Systems, 1992, vol. 5, no 3, pp. 295–312.

    https://doi.org/10.1007/BF01211563
  • 100D. D'Alessandro.

    Introduction to quantum control and dynamics, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2008, xiv+343 p.
  • 101W. P. Dayawansa, C. F. Martin.

    A converse Lyapunov theorem for a class of dynamical systems which undergo switching, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 4, pp. 751–760.

    http://dx.doi.org/10.1109/9.754812
  • 102R. Duits, E. Franken.

    Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images, in: Int. J. Comput. Vis., 2011, vol. 92, no 3, pp. 231–264.

    https://doi.org/10.1007/s11263-010-0332-z
  • 103M. Fliess, J. Lévine, P. Martin, P. Rouchon.

    Flatness and defect of non-linear systems: introductory theory and examples, in: Internat. J. Control, 1995, vol. 61, no 6, pp. 1327–1361.

    https://doi.org/10.1080/00207179508921959
  • 104J. Foisy, M. Alfaro, J. Brock, N. Hodges, J. Zimba.

    The standard double soap bubble in 𝐑2 uniquely minimizes perimeter, in: Pacific J. Math., 1993, vol. 159, no 1, pp. 47–59.

    http://projecteuclid.org/euclid.pjm/1102634378
  • 105A. Franci, R. Sepulchre.

    A three-scale model of spatio-temporal bursting, in: SIAM J. Appl. Dyn. Syst., 2016, vol. 15, no 4, pp. 2143–2175. [ DOI : 10.1137/15M1046101 ]
  • 106S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F. K. Wilhelm.

    Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe, in: European Physical Journal D, 2015, vol. 69, 279 p. [ DOI : 10.1140/epjd/e2015-60464-1 ]
  • 107E. Hakavuori, E. Le Donne.

    Non-minimality of corners in subriemannian geometry, in: Invent. Math., 2016, pp. 1–12. [ DOI : 10.1007/s00222-016-0661-9 ]
  • 108R. K. Hladky, S. D. Pauls.

    Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model, in: J. Math. Imaging Vision, 2010, vol. 36, no 1, pp. 1–27.

    https://doi.org/10.1007/s10851-009-0167-9
  • 109D. Hubel, T. Wiesel.

    Brain and Visual Perception: The Story of a 25-Year Collaboration, Oxford University Press, Oxford, 2004.
  • 110V. Jurdjevic.

    Geometric control theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997, vol. 52, xviii+492 p.
  • 111V. Jurdjevic, H. J. Sussmann.

    Control systems on Lie groups, in: J. Differential Equations, 1972, vol. 12, pp. 313–329.

    https://doi.org/10.1016/0022-0396(72)90035-6
  • 112M. Keyl, R. Zeier, T. Schulte-Herbrueggen.

    Controlling Several Atoms in a Cavity, in: New J. Phys., 2014, vol. 16, 065010 p.
  • 113F. Küsters, S. Trenn.

    Switch observability for switched linear systems, in: Automatica J. IFAC, 2018, vol. 87, pp. 121–127.

    https://doi.org/10.1016/j.automatica.2017.09.024
  • 114E. Le Donne, G. P. Leonardi, R. Monti, D. Vittone.

    Extremal Curves in Nilpotent Lie Groups, in: Geom. Funct. Anal., jul 2013, vol. 23, no 4, pp. 1371–1401. [ DOI : 10.1007/s00039-013-0226-7 ]

    http://arxiv.org/abs/1207.3985
  • 115Z. Leghtas, A. Sarlette, P. Rouchon.

    Adiabatic passage and ensemble control of quantum systems, in: Journal of Physics B, 2011, vol. 44, no 15.
  • 116C. Li, I. Zelenko.

    Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries, in: J. Geom. Phys., 2011, vol. 61, no 4, pp. 781–807.

    https://doi.org/10.1016/j.geomphys.2010.12.009
  • 117D. Liberzon, J. P. Hespanha, A. S. Morse.

    Stability of switched systems: a Lie-algebraic condition, in: Systems Control Lett., 1999, vol. 37, no 3, pp. 117–122.

    https://doi.org/10.1016/S0167-6911(99)00012-2
  • 118D. Liberzon.

    Switching in systems and control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 p.

    https://doi.org/10.1007/978-1-4612-0017-8
  • 119D. Liberzon.

    Calculus of variations and optimal control theory, Princeton University Press, Princeton, NJ, 2012, xviii+235 p, A concise introduction.
  • 120H. Lin, P. J. Antsaklis.

    Stability and stabilizability of switched linear systems: a survey of recent results, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 2, pp. 308–322.

    http://dx.doi.org/10.1109/TAC.2008.2012009
  • 121W. Liu.

    Averaging theorems for highly oscillatory differential equations and iterated Lie brackets, in: SIAM J. Control Optim., 1997, vol. 35, no 6, pp. 1989–2020. [ DOI : 10.1137/S0363012994268667 ]
  • 122J. Lott, C. Villani.

    Ricci curvature for metric-measure spaces via optimal transport, in: Ann. of Math. (2), 2009, vol. 169, no 3, pp. 903–991.

    https://doi.org/10.4007/annals.2009.169.903
  • 123P. Mason, U. Boscain, Y. Chitour.

    Common polynomial Lyapunov functions for linear switched systems, in: SIAM J. Control Optim., 2006, vol. 45, no 1, pp. 226–245 (electronic). [ DOI : 10.1137/040613147 ]
  • 124P. Mason, M. Sigalotti.

    Generic controllability properties for the bilinear Schrödinger equation, in: Comm. Partial Differential Equations, 2010, vol. 35, no 4, pp. 685–706.

    https://doi.org/10.1080/03605300903540919
  • 125L. Massoulié.

    Stability of distributed congestion control with heterogeneous feedback delays, in: IEEE Trans. Automat. Control, 2002, vol. 47, no 6, pp. 895–902, Special issue on systems and control methods for communication networks.

    https://doi.org/10.1109/TAC.2002.1008356
  • 126M. I. Miller, A. Trouvé, L. Younes.

    Geodesic shooting for computational anatomy, in: J. Math. Imaging Vision, 2006, vol. 24, no 2, pp. 209–228.

    https://doi.org/10.1007/s10851-005-3624-0
  • 127M. Mirrahimi.

    Lyapunov control of a quantum particle in a decaying potential, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 5, pp. 1743–1765.

    https://doi.org/10.1016/j.anihpc.2008.09.006
  • 128A. P. Molchanov, Y. S. Pyatnitskiy.

    Lyapunov functions that specify necessary and sufficient conditions for absolute stability of nonlinear nonstationary control systems, I, II, III, in: Automat. Remote Control, 1986, vol. 47, pp. 344–354, 443–451, 620–630.
  • 129R. Montgomery.

    A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p.
  • 130R. Monti.

    The regularity problem for sub-Riemannian geodesics, in: Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., Springer, Cham, 2014, vol. 5, pp. 313–332.

    https://doi.org/10.1007/978-3-319-02132-4_18
  • 131R. Monti, D. Morbidelli.

    Isoperimetric inequality in the Grushin plane, in: J. Geom. Anal., 2004, vol. 14, no 2, pp. 355–368.

    https://doi.org/10.1007/BF02922077
  • 132R. M. Murray, S. S. Sastry.

    Nonholonomic motion planning: steering using sinusoids, in: IEEE Trans. Automat. Control, 1993, vol. 38, no 5, pp. 700–716.

    https://doi.org/10.1109/9.277235
  • 133G. Nenciu.

    On the adiabatic theorem of quantum mechanics, in: J. Phys. A, 1980, vol. 13, no 2, pp. L15–L18.

    http://stacks.iop.org/0305-4470/13/L15
  • 134V. Nersesyan.

    Growth of Sobolev norms and controllability of the Schrödinger equation, in: Comm. Math. Phys., 2009, vol. 290, no 1, pp. 371–387.
  • 135D. Patino, M. Bâja, P. Riedinger, H. Cormerais, J. Buisson, C. Iung.

    Alternative control methods for DC-DC converters: an application to a four-level three-cell DC-DC converter, in: Internat. J. Robust Nonlinear Control, 2011, vol. 21, no 10, pp. 1112–1133.

    https://doi.org/10.1002/rnc.1651
  • 136J. Petitot.

    Neurogéomètrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles, Les Éditions de l'École Polythechnique, 2008.
  • 137J. Ruess, J. Lygeros.

    Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks, in: ACM Trans. Model. Comput. Simul., 2015, vol. 25, no 2, Art. 8, 25 p.

    https://doi.org/10.1145/2688906
  • 138A. Sarti, G. Citti, J. Petitot.

    The symplectic structure of the primary visual cortex, in: Biol. Cybernet., 2008, vol. 98, no 1, pp. 33–48.

    http://dx.doi.org/10.1007/s00422-007-0194-9
  • 139H. Schättler, U. Ledzewicz.

    Geometric optimal control, Interdisciplinary Applied Mathematics, Springer, New York, 2012, vol. 38, xx+640 p, Theory, methods and examples.

    https://doi.org/10.1007/978-1-4614-3834-2
  • 140H. Schättler, U. Ledzewicz.

    Optimal control for mathematical models of cancer therapies, Interdisciplinary Applied Mathematics, Springer, New York, 2015, vol. 42, xix+496 p, An application of geometric methods.

    https://doi.org/10.1007/978-1-4939-2972-6
  • 141R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King.

    Stability criteria for switched and hybrid systems, in: SIAM Rev., 2007, vol. 49, no 4, pp. 545–592. [ DOI : 10.1137/05063516X ]
  • 142S. Solmaz, R. Shorten, K. Wulff, F. Ó Cairbre.

    A design methodology for switched discrete time linear systems with applications to automotive roll dynamics control, in: Automatica J. IFAC, 2008, vol. 44, no 9, pp. 2358–2363.

    https://doi.org/10.1016/j.automatica.2008.01.014
  • 143E. D. Sontag.

    Input to state stability: basic concepts and results, in: Nonlinear and optimal control theory, Lecture Notes in Math., Springer, Berlin, 2008, vol. 1932, pp. 163–220.

    https://doi.org/10.1007/978-3-540-77653-6_3
  • 144K.-T. Sturm.

    On the geometry of metric measure spaces. I, in: Acta Math., 2006, vol. 196, no 1, pp. 65–131.

    https://doi.org/10.1007/s11511-006-0002-8
  • 145K.-T. Sturm.

    On the geometry of metric measure spaces. II, in: Acta Math., 2006, vol. 196, no 1, pp. 133–177.

    https://doi.org/10.1007/s11511-006-0003-7
  • 146Z. Sun, S. S. Ge, T. H. Lee.

    Controllability and reachability criteria for switched linear systems, in: Automatica J. IFAC, 2002, vol. 38, no 5, pp. 775–786.

    https://doi.org/10.1016/S0005-1098(01)00267-9
  • 147Z. Sun, S. S. Ge.

    Stability theory of switched dynamical systems, Communications and Control Engineering Series, Springer, London, 2011, xx+253 p.

    https://doi.org/10.1007/978-0-85729-256-8
  • 148H. J. Sussmann.

    A regularity theorem for minimizers of real-analytic subriemannian metrics, in: 53rd IEEE Conference on Decision and Control, 2014, pp. 4801-4806.
  • 149K. Tan, X. Yang.

    Subriemannian geodesics of Carnot groups of step 3, in: ESAIM Control Optim. Calc. Var., 2013, vol. 19, no 1, pp. 274–287.

    https://doi.org/10.1051/cocv/2012006
  • 150S. Teufel.

    Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003, vol. 1821, vi+236 p.
  • 151A. Trouvé, L. Younes.

    Metamorphoses through Lie group action, in: Found. Comput. Math., 2005, vol. 5, no 2, pp. 173–198.

    https://doi.org/10.1007/s10208-004-0128-z
  • 152E. Trélat.

    Contrôle optimal, Mathématiques Concrètes. [Concrete Mathematics], Vuibert, Paris, 2005, vi+246 p, Théorie & applications. [Theory and applications].
  • 153M. Tucsnak, G. Weiss.

    Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, xii+483 p.

    https://doi.org/10.1007/978-3-7643-8994-9
  • 154G. Turinici.

    On the controllability of bilinear quantum systems, in: Mathematical models and methods for ab initio Quantum Chemistry, M. Defranceschi, C. Le Bris (editors), Lecture Notes in Chemistry, Springer, 2000, vol. 74.
  • 155M. Viana.

    Lectures on Lyapunov exponents, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2014, vol. 145, xiv+202 p.

    https://doi.org/10.1017/CBO9781139976602
  • 156R. Vinter.

    Optimal control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000, xviii+507 p.
  • 157D. Wisniacki, G. Murgida, P. Tamborenea.

    Quantum control using diabatic and adiabatic transitions, in: AIP Conference Proceedings, AIP, 2007, vol. 963, no 2, pp. 840–842.
  • 158L. Yatsenko, S. Guérin, H. Jauslin.

    Topology of adiabatic passage, in: Phys. Rev. A, 2002, vol. 65, 043407, 7 p.
  • 159A. van der Schaft, H. Schumacher.

    An introduction to hybrid dynamical systems, Lecture Notes in Control and Information Sciences, Springer-Verlag London, Ltd., London, 2000, vol. 251, xiv+174 p.

    https://doi.org/10.1007/BFb0109998