Bibliography
Publications of the year
Doctoral Dissertations and Habilitation Theses
-
1R. Bonalli.
Optimal Control of Aerospace Systems with Control-State Constraints and Delays, Sorbonne Université, UPMC University of Paris 6, Laboratoire Jacques-Louis Lions ; ONERA – The French Aerospace Lab, Département TIS, Unité NGPA ; Inria Paris, Equipe CAGE, July 2018.
https://tel.archives-ouvertes.fr/tel-01848542 -
2A. Olivier.
Optimal and robust attitude control of a launcher, Sorbonne Université, October 2018.
https://tel.archives-ouvertes.fr/tel-01962542 -
3L. Sacchelli.
Singularities in sub-Riemannian geometry, Université Paris-Saclay, September 2018.
https://pastel.archives-ouvertes.fr/tel-01893068
Articles in International Peer-Reviewed Journals
-
4G. Barles, A. Briani, E. Trélat.
Value function for regional control problems via dynamic programming and Pontryagin maximum principle, in: Mathematical Control and Related Fields, 2018, vol. 8, no 3-4, pp. 509–533, https://arxiv.org/abs/1605.04079.
https://hal.archives-ouvertes.fr/hal-01313559 -
5K. Beauchard, J.-M. Coron, H. Teismann.
Minimal time for the approximate bilinear control of Schrödinger equations, in: Mathematical Methods in the Applied Sciences, 2018, vol. 41, no 5, pp. 1831-1844. [ DOI : 10.1002/mma.4710 ]
https://hal.archives-ouvertes.fr/hal-01333537 -
6M. Bergounioux, I. Abraham, R. Abraham, G. Carlier, E. Le Pennec, E. Trélat.
Variational methods for tomographic reconstruction with few views, in: Milan Journal of Mathematics, 2018, vol. 86, no 2, pp. 157–200.
https://hal.archives-ouvertes.fr/hal-01817172 -
7U. Boscain, R. Chertovskih, J.-P. Gauthier, D. Prandi, A. Remizov.
Highly corrupted image inpainting through hypoelliptic diffusion, in: Journal of Mathematical Imaging and Vision, April 2018, pp. 1–15, https://arxiv.org/abs/1502.07331. [ DOI : 10.1007/s10851-018-0810-4 ]
https://hal.inria.fr/hal-01139521 -
8D. Bresch-Pietri, C. Prieur, E. Trélat.
Finite-dimensional predictor-based feedback stabilization of a 1D linear reaction-diffusion equation with boundary input delay, in: Systems and Control Letters, 2018, vol. 113, pp. 9–16, https://arxiv.org/abs/1511.03030.
https://hal.archives-ouvertes.fr/hal-01226598 -
9J.-B. Caillau, M. Cerf, A. Sassi, E. Trélat, H. Zidani.
Solving chance constrained optimal control problems in aerospace via Kernel Density Estimation, in: Optimal Control Appl. Methods, 2018, vol. 39, no 5, pp. 1833-1858. [ DOI : 10.1002/oca.2445 ]
https://hal.inria.fr/hal-01507063 -
10M. Caponigro, R. Ghezzi, B. Piccoli, E. Trélat.
Regularization of chattering phenomena via bounded variation controls, in: IEEE Transactions on Automatic Control, July 2018, vol. 63, no 7, pp. 2046-2060, https://arxiv.org/abs/1303.5796. [ DOI : 10.1109/TAC.2018.2810540 ]
https://hal.archives-ouvertes.fr/hal-01359037 -
11M. Caponigro, M. Sigalotti.
Exact controllability in projections of the bilinear Schrödinger equation, in: SIAM Journal on Control and Optimization, 2018, vol. 56.
https://hal.inria.fr/hal-01509971 -
12M. Chupin, T. Haberkorn, E. Trélat.
Transfer Between Invariant Manifolds: From Impulse Transfer to Low-Thrust Transfer, in: Journal of Guidance, Control, and Dynamics, 2018, vol. 41, no 3, pp. 658–672. [ DOI : 10.2514/1.G002922 ]
https://hal.inria.fr/hal-01494042 -
13Y. Colin de Verdière, L. Hillairet, E. Trélat.
Spectral asymptotics for sub-Riemannian Laplacians. I: Quantum ergodicity and quantum limits in the 3D contact case, in: Duke Mathematical Journal, 2018, vol. 167, no 1, pp. 109–174, https://arxiv.org/abs/1504.07112.
https://hal.archives-ouvertes.fr/hal-01144257 -
14J.-M. Coron, L. Gagnon, M. Morancey.
Rapid Stabilization of a Linearized Bilinear 1-D Schrödinger Equation, in: Journal de Mathématiques Pures et Appliquées, July 2018, vol. 115.
https://hal.archives-ouvertes.fr/hal-01408179 -
15J. Lohéac, E. Trélat, E. Zuazua.
Minimal controllability time for finite-dimensional control systems under state constraints, in: Automatica, October 2018, vol. 96, pp. 380-392. [ DOI : 10.1016/j.automatica.2018.07.010 ]
https://hal.archives-ouvertes.fr/hal-01710759 -
16A. Olivier, T. Haberkorn, E. Trélat, E. Bourgeois, D.-A. Handschuh.
Redundancy implies robustness for bang-bang strategies, in: Optimal Control Applications and Methods, 2019, vol. 40, no 1, pp. 85–104, https://arxiv.org/abs/1707.02053.
https://hal.archives-ouvertes.fr/hal-01557937 -
17A. Polyakov, J.-M. Coron, L. Rosier.
On Homogeneous Finite-Time Control for Linear Evolution Equation in Hilbert Space, in: IEEE Transactions on Automatic Control, January 2018, vol. 63, no 9, pp. 3143 - 3150. [ DOI : 10.1109/TAC.2018.2797838 ]
https://hal.inria.fr/hal-01695475 -
18C. Pouchol, J. Clairambault, A. Lorz, E. Trélat.
Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, in: Journal de Mathématiques Pures et Appliquées, 2018, vol. 116, pp. 268–308, https://arxiv.org/abs/1612.04698. [ DOI : 10.1016/j.matpur.2017.10.007 ]
https://hal.archives-ouvertes.fr/hal-01673589 -
19C. Pouchol, E. Trélat.
Global stability with selection in integro-differential Lotka-Volterra systems modelling trait-structured populations, in: Journal of Biological Dynamics, 2018, vol. 12, no 1, pp. 872–893, https://arxiv.org/abs/1702.06187.
https://hal.archives-ouvertes.fr/hal-01470722 -
20C. Prieur, E. Trélat.
Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control, in: IEEE Transactions on Automatic Control, 2018, https://arxiv.org/abs/1709.02735. [ DOI : 10.1109/TAC.2018.2849560 ]
https://hal.archives-ouvertes.fr/hal-01583199 -
21V. Renault, M. Thieullen, E. Trélat.
Minimal time spiking in various ChR2-controlled neuron models, in: Journal of Mathematical Biology, 2018, vol. 76, no 3, pp. 567–608.
https://hal.archives-ouvertes.fr/hal-01320492 -
22L. Sacchelli, M. Sigalotti.
On the Whitney extension property for continuously differentiable horizontal curves in sub-Riemannian manifolds, in: Calculus of Variations and Partial Differential Equations, 2018, https://arxiv.org/abs/1708.02795.
https://hal.archives-ouvertes.fr/hal-01573353 -
23E. Trélat, C. Zhang.
Integral and measure-turnpike properties for infinite-dimensional optimal control systems, in: Mathematics of Control, Signals, and Systems, 2018, vol. 30, no 1, 30:3 p, https://arxiv.org/abs/1705.02762.
https://hal.archives-ouvertes.fr/hal-01519490 -
24E. Trélat, C. Zhang, E. Zuazua.
Optimal shape design for 2D heat equations in large time, in: Pure and Applied Functional Analysis, 2018, vol. 3, no 1, pp. 255–269.
https://hal.archives-ouvertes.fr/hal-01442997 -
25E. Trélat, C. Zhang, E. Zuazua.
Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces, in: SIAM Journal on Control and Optimization, 2018, vol. 56, no 2, pp. 1222-1252.
https://hal.archives-ouvertes.fr/hal-01377320 -
26E. Trélat, J. Zhu, E. Zuazua.
Allee optimal control of a system in ecology, in: Mathematical Models and Methods in Applied Sciences, 2018, vol. 28, no 9, pp. 1665–1697.
https://hal.archives-ouvertes.fr/hal-01696354 -
27S. Xiang.
Small-time local stabilization for a Korteweg-de Vries equation, in: Systems and Control Letters, January 2018, vol. Volume 111, pp. 64-69.
https://hal.archives-ouvertes.fr/hal-01723178 -
28C. Zhang.
Internal controllability of systems of semilinear coupled one-dimensional wave equations with one control, in: SIAM Journal on Control and Optimization, July 2018, vol. 56, no 4, pp. 3092 - 3127. [ DOI : 10.1137/17m1128885 ]
https://hal.archives-ouvertes.fr/hal-01517461
International Conferences with Proceedings
-
29J. Orłowski, A. Chaillet, M. Sigalotti, A. Destexhe.
Adaptive scheme for pathological oscillations disruption in a delayed neuronal population model, in: 57th IEEE Conference on Decision and Control, Miami Beach, United States, Proceedings of the 57th IEEE Conference on Decision and Control, December 2018.
https://hal-centralesupelec.archives-ouvertes.fr/hal-01956472
Conferences without Proceedings
-
30J.-M. Coron, F. Marbach, F. Sueur, P. Zhang.
On the controllability of the Navier-Stokes equation in a rectangle, with a little help of a distributed phantom force, in: Journées EDP, Obernai, France, June 2018.
https://hal.archives-ouvertes.fr/hal-01970878
Scientific Books (or Scientific Book chapters)
-
31E. Trélat.
Stabilization of semilinear PDE's, and uniform decay under discretization, in: London Mathematical Society Lecture Note series, Evolution equations: long time behavior and control, 2018, vol. 439, https://arxiv.org/abs/1506.05883.
https://hal.archives-ouvertes.fr/hal-01165329
Scientific Popularization
-
32N. Augier, U. Boscain, M. Sigalotti.
Control of Quantum Systems by Broken Adiabatic Paths, Ercim, 2018.
https://hal.archives-ouvertes.fr/hal-01879704
Other Publications
-
33N. Augier, U. Boscain, M. Sigalotti.
Adiabatic ensemble control of a continuum of quantum systems, October 2018, working paper or preprint.
https://hal.inria.fr/hal-01759830 -
34D. Barilari, Y. Chitour, F. Jean, D. Prandi, M. Sigalotti.
On the regularity of abnormal minimizers for rank 2 sub-Riemannian structures, October 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01757343 -
35G. Bastin, J.-M. Coron.
Exponential stability of PI control for Saint-Venant equations with a friction term, December 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01956634 -
36G. Bastin, J.-M. Coron, A. Hayat, P. Shang.
Boundary feedback stabilization of hydraulic jumps, February 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02004457 -
37G. Bastin, J.-M. Coron, A. Hayat, P. Shang.
Exponential boundary feedback stabilization of a shock steady state for the inviscid Burgers equation, February 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01723361 -
38F. Boarotto, M. Sigalotti.
Dwell-time control sets and applications to the stability analysis of linear switched systems, February 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-02012606 -
39R. Bonalli, B. Hérissé, E. Trélat.
Continuity of Pontryagin extremal with respect to delays in nonlinear optimal control, November 2018, https://arxiv.org/abs/1805.11990 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01802752 -
40Y. Chitour, G. Mazanti, M. Sigalotti.
On the gap between deterministic and probabilistic joint spectral radii for discrete-time linear systems, December 2018, https://arxiv.org/abs/1812.08399 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01961003 -
41J.-M. Coron, A. Hayat.
PI controllers for 1-D nonlinear transport equation, April 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01766261 -
42J.-M. Coron, F. Marbach, F. Sueur, P. Zhang.
Controllability of the Navier-Stokes equation in a rectangle with a little help of a distributed phantom force, 2018, https://arxiv.org/abs/1801.01860 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01676663 -
43J.-M. Coron, H.-M. Nguyen.
Optimal time for the controllability of linear hyperbolic systems in one dimensional space, December 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01952134 -
44J.-M. Coron, S. Xiang.
Small-time global stabilization of the viscous Burgers equation with three scalar controls, March 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01723188 -
45V. Franceschi, G. Stefani.
Symmetric double bubbles in the Grushin plane, January 2018, https://arxiv.org/abs/1801.00314 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01674525 -
46A. Hayat.
Exponential stability of general 1-D quasilinear systems with source terms for the C 1 norm under boundary conditions, February 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01613139 -
47A. Hayat.
On boundary stability of inhomogeneous 2 × 2 1-D hyperbolic systems for the norm, January 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01790104 -
48A. Hayat.
PI controller for the general Saint-Venant equations, January 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01827988 -
49A. Hayat, P. Shang.
A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope, February 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01704710 -
50E. Humbert, Y. Privat, E. Trélat.
Geometric and spectral characterization of Zoll manifolds, invariant measures and quantum limits, 2018, https://arxiv.org/abs/1811.12717 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01939709 -
51M. Kohli.
A metric interpretation of the geodesic curvature in the Heisenberg group, November 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01916425 -
52A. Olivier, C. Pouchol.
Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer, January 2018, https://arxiv.org/abs/1707.08038 - working paper or preprint.
https://hal-auf.archives-ouvertes.fr/hal-01568779 -
53B. Piccoli, N. Pouradier Duteil, E. Trélat.
Sparse control of Hegselmann-Krause models: Black hole and declustering, February 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01699261 -
54C. Pouchol, E. Trélat, E. Zuazua.
Phase portrait control for 1D monostable and bistable reaction-diffusion equations, May 2018, https://arxiv.org/abs/1805.10786 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01800382 -
55Y. Privat, E. Trélat, E. Zuazua.
Spectral shape optimization for the Neumann traces of the Dirichlet-Laplacian eigenfunctions, September 2018, https://arxiv.org/abs/1809.05316 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01872896 -
56E. Trélat, G. Wang, Y. Xu.
Characterization by observability inequalities of controllability and stabilization properties, November 2018, https://arxiv.org/abs/1811.01543 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01911941 -
57S. Xiang.
Null controllability of a linearized Korteweg-de Vries equation by backstepping approach, September 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01468750 -
58C. Zhang.
Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback, October 2018, https://arxiv.org/abs/1810.11214 - working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01905098 -
59C. Zhang.
Finite-time internal stabilization of a linear 1-D transport equation, January 2019, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01980349
-
60D. Barilari, U. Boscain, M. Sigalotti (editors)
Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2016, vi+324 p, Lecture notes from the IHP Trimester held at the Institut Henri Poincaré, Paris and from the CIRM Summer School “Sub-Riemannian Manifolds: From Geodesics to Hypoelliptic Diffusion” held in Luminy, Fall 2014.
https://doi.org/10.4171/163 -
61D. Barilari, U. Boscain, M. Sigalotti (editors)
Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. II, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2016, viii+299 p, Lecture notes from the IHP Trimester held at the Institut Henri Poincaré, Paris and from the CIRM Summer School “Sub-Riemannian Manifolds: From Geodesics to Hypoelliptic Diffusion” held in Luminy, Fall 2014.
https://doi.org/10.4171/163 -
62R. Adami, U. Boscain.
Controllability of the Schrödinger Equation via Intersection of Eigenvalues, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 1080–1085. -
63A. A. Agrachev.
Some open problems, in: Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., Springer, Cham, 2014, vol. 5, pp. 1–13. -
64A. Agrachev, D. Barilari, L. Rizzi.
Curvature: a variational approach, in: Mem. Amer. Math. Soc., 2018, vol. 256, no 1225, v+142 p. -
65A. A. Agrachev, Y. Baryshnikov, D. Liberzon.
On robust Lie-algebraic stability conditions for switched linear systems, in: Systems Control Lett., 2012, vol. 61, no 2, pp. 347–353.
https://doi.org/10.1016/j.sysconle.2011.11.016 -
66A. Agrachev, U. Boscain, J.-P. Gauthier, F. Rossi.
The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, in: J. Funct. Anal., 2009, vol. 256, no 8, pp. 2621–2655.
https://doi.org/10.1016/j.jfa.2009.01.006 -
67A. Agrachev, P. W. Y. Lee.
Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, in: Math. Ann., 2014, vol. 360, no 1-2, pp. 209–253.
https://doi.org/10.1007/s00208-014-1034-6 -
68A. A. Agrachev, Y. L. Sachkov.
Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004, vol. 87, xiv+412 p, Control Theory and Optimization, II.
https://doi.org/10.1007/978-3-662-06404-7 -
69L. Ambrosio, N. Gigli, G. Savaré.
Metric measure spaces with Riemannian Ricci curvature bounded from below, in: Duke Math. J., 2014, vol. 163, no 7, pp. 1405–1490.
https://doi.org/10.1215/00127094-2681605 -
70L. Ambrosio, P. Tilli.
Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004, vol. 25, viii+133 p. -
71M. Balde, U. Boscain, P. Mason.
A note on stability conditions for planar switched systems, in: Internat. J. Control, 2009, vol. 82, no 10, pp. 1882–1888.
https://doi.org/10.1080/00207170902802992 -
72F. Baudoin, N. Garofalo.
Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, in: J. Eur. Math. Soc. (JEMS), 2017, vol. 19, no 1, pp. 151–219.
https://doi.org/10.4171/JEMS/663 -
73F. Baudoin, J. Wang.
Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds, in: Potential Anal., 2014, vol. 40, no 2, pp. 163–193.
https://doi.org/10.1007/s11118-013-9345-x -
74T. Bayen.
Analytical parameterization of rotors and proof of a Goldberg conjecture by optimal control theory, in: SIAM J. Control Optim., 2008, vol. 47, no 6, pp. 3007–3036. [ DOI : 10.1137/070705325 ] -
75K. Beauchard, J.-M. Coron.
Controllability of a quantum particle in a moving potential well, in: J. Funct. Anal., 2006, vol. 232, no 2, pp. 328–389. -
76M. Benaïm, S. Le Borgne, F. Malrieu, P.-A. Zitt.
Qualitative properties of certain piecewise deterministic Markov processes, in: Ann. Inst. Henri Poincaré Probab. Stat., 2015, vol. 51, no 3, pp. 1040–1075.
https://doi.org/10.1214/14-AIHP619 -
77B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis, J. P. Gauthier.
The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements, in: PLoS Comput. Biol., 2008, vol. 4, no 10, e1000194, 25 p.
https://doi.org/10.1371/journal.pcbi.1000194 -
78F. Blanchini.
Nonquadratic Lyapunov functions for robust control, in: Automatica J. IFAC, 1995, vol. 31, no 3, pp. 451–461.
http://dx.doi.org/10.1016/0005-1098(94)00133-4 -
79F. Blanchini, S. Miani.
A new class of universal Lyapunov functions for the control of uncertain linear systems, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 3, pp. 641–647.
http://dx.doi.org/10.1109/9.751368 -
80A. Bonfiglioli, E. Lanconelli, F. Uguzzoni.
Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, xxvi+800 p. -
81M. Born, V. Fock.
Beweis des adiabatensatzes, in: Zeitschrift für Physik A Hadrons and Nuclei, 1928, vol. 51, no 3–4, pp. 165–180. -
82U. Boscain.
Stability of planar switched systems: the linear single input case, in: SIAM J. Control Optim., 2002, vol. 41, no 1, pp. 89–112. [ DOI : 10.1137/S0363012900382837 ] -
83U. Boscain, M. Caponigro, T. Chambrion, M. Sigalotti.
A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, in: Comm. Math. Phys., 2012, vol. 311, no 2, pp. 423–455.
https://doi.org/10.1007/s00220-012-1441-z -
84U. Boscain, M. Caponigro, M. Sigalotti.
Multi-input Schrödinger equation: controllability, tracking, and application to the quantum angular momentum, in: J. Differential Equations, 2014, vol. 256, no 11, pp. 3524–3551.
https://doi.org/10.1016/j.jde.2014.02.004 -
85U. Boscain, G. Charlot, M. Sigalotti.
Stability of planar nonlinear switched systems, in: Discrete Contin. Dyn. Syst., 2006, vol. 15, no 2, pp. 415–432.
https://doi.org/10.3934/dcds.2006.15.415 -
86U. Boscain, R. A. Chertovskih, J. P. Gauthier, A. O. Remizov.
Hypoelliptic diffusion and human vision: a semidiscrete new twist, in: SIAM J. Imaging Sci., 2014, vol. 7, no 2, pp. 669–695. [ DOI : 10.1137/130924731 ] -
87U. Boscain, F. Chittaro, P. Mason, M. Sigalotti.
Adiabatic control of the Schroedinger equation via conical intersections of the eigenvalues, in: IEEE Trans. Automat. Control, 2012, vol. 57, no 8, pp. 1970–1983. -
88U. Boscain, J. Duplaix, J.-P. Gauthier, F. Rossi.
Anthropomorphic image reconstruction via hypoelliptic diffusion, in: SIAM J. Control Optim., 2012, vol. 50, no 3, pp. 1309–1336. [ DOI : 10.1137/11082405X ] -
89M. S. Branicky.
Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, in: IEEE Trans. Automat. Control, 1998, vol. 43, no 4, pp. 475–482, Hybrid control systems.
https://doi.org/10.1109/9.664150 -
90R. W. Brockett.
System theory on group manifolds and coset spaces, in: SIAM J. Control, 1972, vol. 10, pp. 265–284. -
91F. Bullo, A. D. Lewis.
Geometric control of mechanical systems, Texts in Applied Mathematics, Springer-Verlag, New York, 2005, vol. 49, xxiv+726 p, Modeling, analysis, and design for simple mechanical control systems. [ DOI : 10.1007/978-1-4899-7276-7 ] -
92C. Carathéodory.
Untersuchungen über die Grundlagen der Thermodynamik, in: Math. Ann., 1909, vol. 67, no 3, pp. 355–386.
https://doi.org/10.1007/BF01450409 -
93E. Cartan.
Sur la represéntation géométrique des systèmes matériels non holonomes, in: Proceedings of the International Congress of Mathematicians. Volume 4., 1928, pp. 253–261. -
94T. Chambrion, P. Mason, M. Sigalotti, U. Boscain.
Controllability of the discrete-spectrum Schrödinger equation driven by an external field, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 1, pp. 329–349.
https://doi.org/10.1016/j.anihpc.2008.05.001 -
95G. Citti, A. Sarti.
A cortical based model of perceptual completion in the roto-translation space, in: J. Math. Imaging Vision, 2006, vol. 24, no 3, pp. 307–326.
http://dx.doi.org/10.1007/s10851-005-3630-2 -
96F. Colonius, G. Mazanti.
Decay rates for stabilization of linear continuous-time systems with random switching, in: Math. Control Relat. Fields, 2019. -
97J.-M. Coron.
Control and nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007, vol. 136, xiv+426 p. -
98J.-M. Coron.
On the controllability of nonlinear partial differential equations, in: Proceedings of the International Congress of Mathematicians. Volume I, Hindustan Book Agency, New Delhi, 2010, pp. 238–264. -
99J.-M. Coron.
Global asymptotic stabilization for controllable systems without drift, in: Math. Control Signals Systems, 1992, vol. 5, no 3, pp. 295–312.
https://doi.org/10.1007/BF01211563 -
100D. D'Alessandro.
Introduction to quantum control and dynamics, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2008, xiv+343 p. -
101W. P. Dayawansa, C. F. Martin.
A converse Lyapunov theorem for a class of dynamical systems which undergo switching, in: IEEE Trans. Automat. Control, 1999, vol. 44, no 4, pp. 751–760.
http://dx.doi.org/10.1109/9.754812 -
102R. Duits, E. Franken.
Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images, in: Int. J. Comput. Vis., 2011, vol. 92, no 3, pp. 231–264.
https://doi.org/10.1007/s11263-010-0332-z -
103M. Fliess, J. Lévine, P. Martin, P. Rouchon.
Flatness and defect of non-linear systems: introductory theory and examples, in: Internat. J. Control, 1995, vol. 61, no 6, pp. 1327–1361.
https://doi.org/10.1080/00207179508921959 -
104J. Foisy, M. Alfaro, J. Brock, N. Hodges, J. Zimba.
The standard double soap bubble in uniquely minimizes perimeter, in: Pacific J. Math., 1993, vol. 159, no 1, pp. 47–59.
http://projecteuclid.org/euclid.pjm/1102634378 -
105A. Franci, R. Sepulchre.
A three-scale model of spatio-temporal bursting, in: SIAM J. Appl. Dyn. Syst., 2016, vol. 15, no 4, pp. 2143–2175. [ DOI : 10.1137/15M1046101 ] -
106S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F. K. Wilhelm.
Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe, in: European Physical Journal D, 2015, vol. 69, 279 p. [ DOI : 10.1140/epjd/e2015-60464-1 ] -
107E. Hakavuori, E. Le Donne.
Non-minimality of corners in subriemannian geometry, in: Invent. Math., 2016, pp. 1–12. [ DOI : 10.1007/s00222-016-0661-9 ] -
108R. K. Hladky, S. D. Pauls.
Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model, in: J. Math. Imaging Vision, 2010, vol. 36, no 1, pp. 1–27.
https://doi.org/10.1007/s10851-009-0167-9 -
109D. Hubel, T. Wiesel.
Brain and Visual Perception: The Story of a 25-Year Collaboration, Oxford University Press, Oxford, 2004. -
110V. Jurdjevic.
Geometric control theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997, vol. 52, xviii+492 p. -
111V. Jurdjevic, H. J. Sussmann.
Control systems on Lie groups, in: J. Differential Equations, 1972, vol. 12, pp. 313–329.
https://doi.org/10.1016/0022-0396(72)90035-6 -
112M. Keyl, R. Zeier, T. Schulte-Herbrueggen.
Controlling Several Atoms in a Cavity, in: New J. Phys., 2014, vol. 16, 065010 p. -
113F. Küsters, S. Trenn.
Switch observability for switched linear systems, in: Automatica J. IFAC, 2018, vol. 87, pp. 121–127.
https://doi.org/10.1016/j.automatica.2017.09.024 -
114E. Le Donne, G. P. Leonardi, R. Monti, D. Vittone.
Extremal Curves in Nilpotent Lie Groups, in: Geom. Funct. Anal., jul 2013, vol. 23, no 4, pp. 1371–1401. [ DOI : 10.1007/s00039-013-0226-7 ]
http://arxiv.org/abs/1207.3985 -
115Z. Leghtas, A. Sarlette, P. Rouchon.
Adiabatic passage and ensemble control of quantum systems, in: Journal of Physics B, 2011, vol. 44, no 15. -
116C. Li, I. Zelenko.
Jacobi equations and comparison theorems for corank 1 sub-Riemannian structures with symmetries, in: J. Geom. Phys., 2011, vol. 61, no 4, pp. 781–807.
https://doi.org/10.1016/j.geomphys.2010.12.009 -
117D. Liberzon, J. P. Hespanha, A. S. Morse.
Stability of switched systems: a Lie-algebraic condition, in: Systems Control Lett., 1999, vol. 37, no 3, pp. 117–122.
https://doi.org/10.1016/S0167-6911(99)00012-2 -
118D. Liberzon.
Switching in systems and control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 p.
https://doi.org/10.1007/978-1-4612-0017-8 -
119D. Liberzon.
Calculus of variations and optimal control theory, Princeton University Press, Princeton, NJ, 2012, xviii+235 p, A concise introduction. -
120H. Lin, P. J. Antsaklis.
Stability and stabilizability of switched linear systems: a survey of recent results, in: IEEE Trans. Automat. Control, 2009, vol. 54, no 2, pp. 308–322.
http://dx.doi.org/10.1109/TAC.2008.2012009 -
121W. Liu.
Averaging theorems for highly oscillatory differential equations and iterated Lie brackets, in: SIAM J. Control Optim., 1997, vol. 35, no 6, pp. 1989–2020. [ DOI : 10.1137/S0363012994268667 ] -
122J. Lott, C. Villani.
Ricci curvature for metric-measure spaces via optimal transport, in: Ann. of Math. (2), 2009, vol. 169, no 3, pp. 903–991.
https://doi.org/10.4007/annals.2009.169.903 -
123P. Mason, U. Boscain, Y. Chitour.
Common polynomial Lyapunov functions for linear switched systems, in: SIAM J. Control Optim., 2006, vol. 45, no 1, pp. 226–245 (electronic). [ DOI : 10.1137/040613147 ] -
124P. Mason, M. Sigalotti.
Generic controllability properties for the bilinear Schrödinger equation, in: Comm. Partial Differential Equations, 2010, vol. 35, no 4, pp. 685–706.
https://doi.org/10.1080/03605300903540919 -
125L. Massoulié.
Stability of distributed congestion control with heterogeneous feedback delays, in: IEEE Trans. Automat. Control, 2002, vol. 47, no 6, pp. 895–902, Special issue on systems and control methods for communication networks.
https://doi.org/10.1109/TAC.2002.1008356 -
126M. I. Miller, A. Trouvé, L. Younes.
Geodesic shooting for computational anatomy, in: J. Math. Imaging Vision, 2006, vol. 24, no 2, pp. 209–228.
https://doi.org/10.1007/s10851-005-3624-0 -
127M. Mirrahimi.
Lyapunov control of a quantum particle in a decaying potential, in: Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, vol. 26, no 5, pp. 1743–1765.
https://doi.org/10.1016/j.anihpc.2008.09.006 -
128A. P. Molchanov, Y. S. Pyatnitskiy.
Lyapunov functions that specify necessary and sufficient conditions for absolute stability of nonlinear nonstationary control systems, I, II, III, in: Automat. Remote Control, 1986, vol. 47, pp. 344–354, 443–451, 620–630. -
129R. Montgomery.
A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002, vol. 91, xx+259 p. -
130R. Monti.
The regularity problem for sub-Riemannian geodesics, in: Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., Springer, Cham, 2014, vol. 5, pp. 313–332.
https://doi.org/10.1007/978-3-319-02132-4_18 -
131R. Monti, D. Morbidelli.
Isoperimetric inequality in the Grushin plane, in: J. Geom. Anal., 2004, vol. 14, no 2, pp. 355–368.
https://doi.org/10.1007/BF02922077 -
132R. M. Murray, S. S. Sastry.
Nonholonomic motion planning: steering using sinusoids, in: IEEE Trans. Automat. Control, 1993, vol. 38, no 5, pp. 700–716.
https://doi.org/10.1109/9.277235 -
133G. Nenciu.
On the adiabatic theorem of quantum mechanics, in: J. Phys. A, 1980, vol. 13, no 2, pp. L15–L18.
http://stacks.iop.org/0305-4470/13/L15 -
134V. Nersesyan.
Growth of Sobolev norms and controllability of the Schrödinger equation, in: Comm. Math. Phys., 2009, vol. 290, no 1, pp. 371–387. -
135D. Patino, M. Bâja, P. Riedinger, H. Cormerais, J. Buisson, C. Iung.
Alternative control methods for DC-DC converters: an application to a four-level three-cell DC-DC converter, in: Internat. J. Robust Nonlinear Control, 2011, vol. 21, no 10, pp. 1112–1133.
https://doi.org/10.1002/rnc.1651 -
136J. Petitot.
Neurogéomètrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles, Les Éditions de l'École Polythechnique, 2008. -
137J. Ruess, J. Lygeros.
Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks, in: ACM Trans. Model. Comput. Simul., 2015, vol. 25, no 2, Art. 8, 25 p.
https://doi.org/10.1145/2688906 -
138A. Sarti, G. Citti, J. Petitot.
The symplectic structure of the primary visual cortex, in: Biol. Cybernet., 2008, vol. 98, no 1, pp. 33–48.
http://dx.doi.org/10.1007/s00422-007-0194-9 -
139H. Schättler, U. Ledzewicz.
Geometric optimal control, Interdisciplinary Applied Mathematics, Springer, New York, 2012, vol. 38, xx+640 p, Theory, methods and examples.
https://doi.org/10.1007/978-1-4614-3834-2 -
140H. Schättler, U. Ledzewicz.
Optimal control for mathematical models of cancer therapies, Interdisciplinary Applied Mathematics, Springer, New York, 2015, vol. 42, xix+496 p, An application of geometric methods.
https://doi.org/10.1007/978-1-4939-2972-6 -
141R. Shorten, F. Wirth, O. Mason, K. Wulff, C. King.
Stability criteria for switched and hybrid systems, in: SIAM Rev., 2007, vol. 49, no 4, pp. 545–592. [ DOI : 10.1137/05063516X ] -
142S. Solmaz, R. Shorten, K. Wulff, F. Ó Cairbre.
A design methodology for switched discrete time linear systems with applications to automotive roll dynamics control, in: Automatica J. IFAC, 2008, vol. 44, no 9, pp. 2358–2363.
https://doi.org/10.1016/j.automatica.2008.01.014 -
143E. D. Sontag.
Input to state stability: basic concepts and results, in: Nonlinear and optimal control theory, Lecture Notes in Math., Springer, Berlin, 2008, vol. 1932, pp. 163–220.
https://doi.org/10.1007/978-3-540-77653-6_3 -
144K.-T. Sturm.
On the geometry of metric measure spaces. I, in: Acta Math., 2006, vol. 196, no 1, pp. 65–131.
https://doi.org/10.1007/s11511-006-0002-8 -
145K.-T. Sturm.
On the geometry of metric measure spaces. II, in: Acta Math., 2006, vol. 196, no 1, pp. 133–177.
https://doi.org/10.1007/s11511-006-0003-7 -
146Z. Sun, S. S. Ge, T. H. Lee.
Controllability and reachability criteria for switched linear systems, in: Automatica J. IFAC, 2002, vol. 38, no 5, pp. 775–786.
https://doi.org/10.1016/S0005-1098(01)00267-9 -
147Z. Sun, S. S. Ge.
Stability theory of switched dynamical systems, Communications and Control Engineering Series, Springer, London, 2011, xx+253 p.
https://doi.org/10.1007/978-0-85729-256-8 -
148H. J. Sussmann.
A regularity theorem for minimizers of real-analytic subriemannian metrics, in: 53rd IEEE Conference on Decision and Control, 2014, pp. 4801-4806. -
149K. Tan, X. Yang.
Subriemannian geodesics of Carnot groups of step 3, in: ESAIM Control Optim. Calc. Var., 2013, vol. 19, no 1, pp. 274–287.
https://doi.org/10.1051/cocv/2012006 -
150S. Teufel.
Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2003, vol. 1821, vi+236 p. -
151A. Trouvé, L. Younes.
Metamorphoses through Lie group action, in: Found. Comput. Math., 2005, vol. 5, no 2, pp. 173–198.
https://doi.org/10.1007/s10208-004-0128-z -
152E. Trélat.
Contrôle optimal, Mathématiques Concrètes. [Concrete Mathematics], Vuibert, Paris, 2005, vi+246 p, Théorie & applications. [Theory and applications]. -
153M. Tucsnak, G. Weiss.
Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, xii+483 p.
https://doi.org/10.1007/978-3-7643-8994-9 -
154G. Turinici.
On the controllability of bilinear quantum systems, in: Mathematical models and methods for ab initio Quantum Chemistry, M. Defranceschi, C. Le Bris (editors), Lecture Notes in Chemistry, Springer, 2000, vol. 74. -
155M. Viana.
Lectures on Lyapunov exponents, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2014, vol. 145, xiv+202 p.
https://doi.org/10.1017/CBO9781139976602 -
156R. Vinter.
Optimal control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000, xviii+507 p. -
157D. Wisniacki, G. Murgida, P. Tamborenea.
Quantum control using diabatic and adiabatic transitions, in: AIP Conference Proceedings, AIP, 2007, vol. 963, no 2, pp. 840–842. -
158L. Yatsenko, S. Guérin, H. Jauslin.
Topology of adiabatic passage, in: Phys. Rev. A, 2002, vol. 65, 043407, 7 p. -
159A. van der Schaft, H. Schumacher.
An introduction to hybrid dynamical systems, Lecture Notes in Control and Information Sciences, Springer-Verlag London, Ltd., London, 2000, vol. 251, xiv+174 p.
https://doi.org/10.1007/BFb0109998