FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies


Section: Research Program

Statistical aspects of topological and geometric data analysis

The wide variety of larger and larger available data - often corrupted by noise and outliers - requires to consider the statistical properties of their topological and geometric features and to propose new relevant statistical models for their study.

There exist various statistical and machine learning methods intending to uncover the geometric structure of data. Beyond manifold learning and dimensionality reduction approaches that generally do not allow to assert the relevance of the inferred topological and geometric features and are not well-suited for the analysis of complex topological structures, set estimation methods intend to estimate, from random samples, a set around which the data is concentrated. In these methods, that include support and manifold estimation, principal curves/manifolds and their various generalizations to name a few, the estimation problems are usually considered under losses, such as Hausdorff distance or symmetric difference, that are not sensitive to the topology of the estimated sets, preventing these tools to directly infer topological or geometric information.

Regarding purely topological features, the statistical estimation of homology or homotopy type of compact subsets of Euclidean spaces, has only been considered recently, most of the time under the quite restrictive assumption that the data are randomly sampled from smooth manifolds.

In a more general setting, with the emergence of new geometric inference tools based on the study of distance functions and algebraic topology tools such as persistent homology, computational topology has recently seen an important development offering a new set of methods to infer relevant topological and geometric features of data sampled in general metric spaces. The use of these tools remains widely heuristic and until recently there were only a few preliminary results establishing connections between geometric inference, persistent homology and statistics. However, this direction has attracted a lot of attention over the last three years. In particular, stability properties and new representations of persistent homology information have led to very promising results to which the DataShape members have significantly contributed. These preliminary results open many perspectives and research directions that need to be explored.

Our goal is to build on our first statistical results in tda to develop the mathematical foundations of Statistical Topological and Geometric Data Analysis. Combined with the other objectives, our ultimate goal is to provide a well-founded and effective statistical toolbox for the understanding of topology and geometry of data.