EN FR
EN FR


Section: New Results

Shape and topology optimization

Taking into account thermal residual stresses in topology optimization of structures built by additive manufacturing

G. Allaire and L. Jakabcin.

We introduce a model and several constraints for shape and topology optimization of structures, built by additive manufacturing techniques. The goal of these constraints is to take into account the thermal residual stresses or the thermal deformations, generated by processes like Selective Laser Melting, right from the beginning of the structural design optimization. In other words, the structure is optimized concurrently for its final use and for its behavior during the layer by layer production process. It is well known that metallic additive manufacturing generates very high temperatures and heat fluxes, which in turn yield thermal deformations that may prevent the coating of a new powder layer, or thermal residual stresses that may hinder the mechanical properties of the final design. Our proposed constraints are targeted to avoid these undesired effects. Shape derivatives are computed by an adjoint method and are incorporated into a level set numerical optimization algorithm. Several 2-d and 3-d numerical examples demonstrate the interest and effectiveness of our approach.

Topology optimization of modulated and oriented periodic microstructures by the homogenization method

G. Allaire, P. Geoffroy-Donders and O. Pantz

This work is concerned with the topology optimization of structures made of periodically perforated material, where the microscopic periodic cell can be macroscopically modulated and oriented. The main idea is to optimize the homogenized formulation of this problem, which is an easy task of parametric optimization, then to project the optimal microstructure at a desired lengthscale, which is a delicate issue, albeit computationally cheap. The main novelty of our work is, in a plane setting, the conformal treatment of the optimal orientation of the microstructure. In other words, although the periodicity cell has varying parameters and orientation throughout the computational domain, the angles between its members or bars are conserved. The main application of our work is the optimization of so-called lattice materials which are becoming increasingly popular in the context of additive manufacturing. Several numerical examples are presented for single and multiple loads problems, as well as for compliance or more general objective functions.

Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework

G. Allaire, F. Feppon, F. Bordeu, J. Cortial and C. Dapogny

Hadamard's method of shape differentiation is applied to topology optimization of a weakly coupled three physics problem. The coupling is weak because the equations involved are solved consecutively, namely the steady state Navier-Stokes equations for the fluid domain, first, the convection diffusion equation for the whole domain, second, and the linear thermo-elasticity system in the solid domain, third. Shape sensitivities are derived in a fully Lagrangian setting which allows us to obtain shape derivatives of general objective functions. An emphasis is given on the derivation of the adjoint interface condition dual to the one of equality of the normal stresses at the fluid solid interface. The arguments allowing to obtain this surprising condition are specifically detailed on a simplified scalar problem. Numerical test cases are presented using a level set mesh evolution method. It is demonstrated how the implementation enables to treat a variety of shape optimization problems.

Optimizing supports for additive manufacturing

G. Allaire and B. Bogosel

In additive manufacturing process support structures are often required to ensure the quality of the final built part. In this article we present mathematical models and their numerical implementations in an optimization loop, which allow us to design optimal support structures. Our models are derived with the requirement that they should be as simple as possible, computationally cheap and yet based on a realistic physical modeling. Supports are optimized with respect to two different physical properties. First, they must support overhanging regions of the structure for improving the stiffness of the supported structure during the building process. Second, supports can help in channeling the heat flux produced by the source term (typically a laser beam) and thus improving the cooling down of the structure during the fabrication process. Of course, more involved constraints or manufacturability conditions could be taken into account, most notably removal of supports. Our work is just a first step, proposing a general framework for support optimization. Our optimization algorithm is based on the level set method and on the computation of shape derivatives by the Hadamard method. In a first approach, only the shape and topology of the supports are optimized, for a given and fixed structure. In second and more elaborated strategy, both the supports and the structure are optimized, which amounts to a specific multiphase optimization problem. Numerical examples are given in 2-d and 3-d.

Structural optimization under internal porosity constraints using topological derivatives

G. Allaire, J.Martinez-Frutos, C. Dapogny, F. Periago

Porosity is a well-known phenomenon occurring during various manufacturing processes (casting, welding, additive manufacturing) of solid structures, which undermines their reliability and mechanical performance. The main purpose of this article is to introduce a new constraint functional of the domain which controls the negative impact of porosity on elastic structures in the framework of shape and topology optimization. The main ingredient of our modelling is the notion of topological derivative, which is used in a slightly unusual way: instead of being an indicator of where to nucleate holes in the course of the optimization process, it is a component of a new constraint functional which assesses the influence of pores on the mechanical performance of structures. The shape derivative of this constraint is calculated and incorporated into a level set based shape optimization algorithm. Our approach is illustrated by several two- and three-dimensional numerical experiments of topology optimization problems constrained by a control on the porosity effect.