EN FR
EN FR


Section: New Results

Analysis of some wave problems

On well-posedness of time-harmonic problems in an unbounded strip for a thin plate model

L. Bourgeois, L. Chesnel, S. Fliss

We study the propagation of elastic waves in the time-harmonic regime in a waveguide which is unbounded in one direction and bounded in the two other (transverse) directions. We assume that the waveguide is thin in one of these transverse directions, which leads us to consider a Kirchhoff-Love plate model in a locally perturbed 2D strip. For time harmonic scattering problems in unbounded domains, well-posedness does not hold in a classical setting and it is necessary to pre- scribe the behaviour of the solution at infinity. This is challenging for the model that we consider and constitutes our main contribution. Two types of boundary conditions are considered: either the strip is simply supported or the strip is clamped. The two boundary conditions are treated with two different methods. For the simply supported problem, the analysis is based on a result of Hilbert basis in the transverse section. For the clamped problem, this property does not hold. Instead we adopt the Kondratiev's approach, based on the use of the Fourier transform in the unbounded direction, together with techniques of weighted Sobolev spaces with detached asymptotics. After introducing radiation conditions, the corresponding scattering problems are shown to be well-posed in the Fredholm sense. We also show that the solutions are the physical (outgoing) solutions in the sense of the limiting absorption principle.

Crime Pays: Homogenized Wave Equations for Long Times

G. Allaire, A. Lamacz and J. Rauch

This work examines the accuracy for large times of asymptotic expansions from periodic homogenization of wave equations. As usual, ϵ denotes the small period of the coefficients in the wave equation. We first prove that the standard two scale asymptotic expansion provides an accurate approximation of the exact solution for times t of order ϵ-2+δ for any δ>0. Second, for longer times, we show that a different algorithm, that is called criminal because it mixes different powers of ϵ, yields an approximation of the exact solution with error O(ϵN) for times ϵ-N with N as large as one likes. The criminal algorithm involves high order homogenized equations that, in the context of the wave equation, were first proposed by Santosa and Symes and analyzed by Lamacz. The high order homogenized equations yield dispersive corrections for moderate wave numbers. We give a systematic analysis for all time scales and all high order corrective terms.