Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies

Section: New Results

Location Aware Opportunistic Bandwidth Sharing between Static and Mobile Users with Stochastic Learning in Cellular Networks

In [7], we consider location-dependent opportunistic bandwidth sharing between static and mobile downlink users in a cellular network. Each cell has some fixed number of static users. Mobile users enter the cell, move inside the cell for some time and then leave the cell. In order to provide higher data rate to mobile users, we propose to provide higher bandwidth to the mobile users at favourable times and locations, and provide higher bandwidth to the static users in other times. We formulate the problem as a long run average reward Markov decision process (MDP) where the per-step reward is a linear combination of instantaneous data volumes received by static and mobile users, and find the optimal policy. The transition structure of this MDP is not known in general. To alleviate this issue, we propose a learning algorithm based on single timescale stochastic approximation. Also, noting that the unconstrained MDP can be used to solve a constrained problem, we provide a learning algorithm based on multi-timescale stochastic approximation. The results are extended to address the issue of fair bandwidth sharing between the two classes of users. Numerical results demonstrate performance improvement by our scheme, and also the trade-off between performance gain and fairness.