Section:
New Results
Group synchronization on grids
Group synchronization requires to estimate unknown elements
of a compact group
associated to the vertices of a graph , using noisy observations of
the group differences associated to the edges.
This model is relevant to a variety of applications ranging from structure
from motion in computer vision to graph localization and positioning,
to certain families of community detection problems.
We focus on the case in which the graph is the -dimensional grid.
Since the unknowns
are only determined up to a global action of the group, we
consider the following weak recovery question.
Can we determine the group difference between far
apart vertices better than by random guessing?
We prove that weak recovery is possible (provided the noise is small enough)
for and, for certain finite groups, for .
Vice-versa, for some continuous groups, we prove that weak recovery is
impossible for . Finally, for strong enough noise, weak recovery is
always impossible.