FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies



Section: Partnerships and Cooperations

National Initiatives

GdR GeoSto

Members of Dyogene participate in Research Group GeoSto (Groupement de recherche, GdR 3477) http://gdr-geostoch.math.cnrs.fr/ on Stochastic Geometry led by and David Coupier [Université de Valenciennes].

This is a collaboration framework for all French research teams working in the domain of spatial stochastic modeling, both on theory development and in applications. This year DYOGENE has co-organized yearly conference of the GdR Stochastic Geometry Days 2018 14–18 mai 2018 Paris (France); https://geosto-2018.sciencesconf.org/.

GdR RO

Members of Dyogene participate in GdR-RO (Recherche Opérationelle; GdR CNRS 3002), http://gdrro.lip6.fr/, working group COSMOS (Stochastic optimization and control, modeling and simulation), lead by A. Busic and E. Hyon (LIP 6); http://gdrro.lip6.fr/?q=node/78

ANR JCJC PARI

Probabilistic Approach for Renewable Energy Integration: Virtual Storage from Flexible Loads. The project started in January 2017. PI — A. Bušić. This project is motivated by current and projected needs of a power grid with significant renewable energy integration. Renewable energy sources such as wind and solar have a high degree of unpredictability and time variation, which makes balancing demand and supply challenging. There is an increased need for ancillary services to smooth the volatility of renewable power. In the absence of large, expensive batteries, we may have to increase our inventory of responsive fossil-fuel generators, negating the environmental benefits of renewable energy. The proposed approach addresses this challenge by harnessing the inherent flexibility in demand of many types of loads. The objective of the project is to develop decentralized control for automated demand dispatch, that can be used by grid operators as ancillary service to regulate demand-supply balance at low cost. We call the resource obtained from these techniques virtual energy storage (VES). Our goal is to create the necessary ancillary services for the grid that are environmentally friendly, that have low cost and that do not impact the quality of service (QoS) for the consumers. Besides respecting the needs of the loads, the aim of the project is to design local control solutions that require minimal communications from the loads to the centralized entity. This is possible through a systems architecture that includes the following elements: i) local control at each load based on local measurements combined with a grid-level signal; ii) frequency decomposition of the regulation signal based on QoS and physical constraints for each class of loads.