Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies

Section: New Software and Platforms


Scalable Fast Multipole Method

Keywords: N-body - Fast multipole method - Parallelism - MPI - OpenMP

Scientific Description: ScalFMM is a software library to simulate N-body interactions using the Fast Multipole Method. The library offers two methods to compute interactions between bodies when the potential decays like 1/r. The first method is the classical FMM based on spherical harmonic expansions and the second is the Black-Box method which is an independent kernel formulation (introduced by E. Darve @ Stanford). With this method, we can now easily add new non oscillatory kernels in our library. For the classical method, two approaches are used to decrease the complexity of the operators. We consider either matrix formulation that allows us to use BLAS routines or rotation matrix to speed up the M2L operator.

ScalFMM intends to offer all the functionalities needed to perform large parallel simulations while enabling an easy customization of the simulation components: kernels, particles and cells. It works in parallel in a shared/distributed memory model using OpenMP and MPI. The software architecture has been designed with two major objectives: being easy to maintain and easy to understand. There is two main parts:

the management of the octree and the parallelization of the method the kernels. This new architecture allow us to easily add new FMM algorithm or kernels and new paradigm of parallelization.

Functional Description: Compute N-body interactions using the Fast Multipole Method for large number of objects