Major publications by the team in recent years Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 3G. Dujardin.

    Contribution à l'analyse numérique de problèmes d'évolution : comportements asymptotiques et applications à l'équation de Schrödinger, Universite de Lille, November 2018, Habilitation à diriger des recherches.


Articles in International Peer-Reviewed Journals

  • 4C. Beltrán, A. Hardy.

    Energy of the Coulomb Gas on the Sphere at Low Temperature, in: Archive for Rational Mechanics and Analysis, October 2018. [ DOI : 10.1007/s00205-018-1316-3 ]

  • 5C. Bernardin, P. Gonçalves, M. Jara, M. Simon.

    Interpolation process between standard diffusion and fractional diffusion, in: Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2018.

  • 6C. Bernardin, P. Gonçalves, M. Jara, M. Simon.

    Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence, in: Communications in Mathematical Physics, 2018.

  • 7D. Chafai, A. Hardy, M. Maïda.

    Concentration for Coulomb gases and Coulomb transport inequalities, in: Journal of Functional Analysis, September 2018, vol. 275, no 16, pp. 1447-1483, https://arxiv.org/abs/1610.00980. [ DOI : 10.1016/j.jfa.2018.06.004 ]

  • 8S. De Bièvre, T. Goudon, A. Vavasseur.

    Stability analysis of a Vlasov-Wave system describing particles interacting with their environment, in: Journal of Differential Equations, June 2018, vol. 264, no 12, pp. 7069-7093.

  • 9S. De Bièvre, S. Rota Nodari.

    Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups, in: Archive for Rational Mechanics and Analysis, 2018, https://arxiv.org/abs/1605.02523. [ DOI : 10.1007/s00205-018-1278-5 ]

  • 10A. De Laire, P. Gravejat.

    The Sine-Gordon regime of the Landau-Lifshitz equation with a strong easy-plane anisotropy, in: Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, November 2018, vol. 35, no 7, pp. 1885-1945.

  • 11A. Hardy.

    Polynomial Ensembles and Recurrence Coefficients, in: Constructive Approximation, August 2018, vol. 48, no 1, pp. 137 - 162. [ DOI : 10.1007/s00365-017-9413-3 ]

  • 12T. Komorowski, S. Olla, M. Simon.

    Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities, in: Kinetic and Related Models , 2018, vol. 11, no 3, pp. 615-645.


Other Publications

References in notes
  • 24G. Basile, C. Bernardin, S. Olla.

    Thermal conductivity for a momentum conservative model, in: Comm. Math. Phys., 2009, vol. 287, no 1, pp. 67–98.

  • 25I. Bejenaru, A. D. Ionescu, C. E. Kenig, D. Tataru.

    Global Schrödinger maps in dimensions d2: small data in the critical Sobolev spaces, in: Annals of Mathematics, 2011, pp. 1443–1506.
  • 26P. Gonçalves, C. Landim, C. Toninelli.

    Hydrodynamic limit for a particle system with degenerate rates, in: Ann. Inst. Henri Poincaré Probab. Stat., 2009, vol. 45, no 4, pp. 887–909.

  • 27J. Gravner, J. Quastel.

    Internal DLA and the Stefan problem, in: Ann. Probab., 2000, vol. 28, no 4, pp. 1528–1562.

  • 28R. L. Jerrard, D. Smets.

    On Schrödinger maps from T1 to S2, in: Ann. Sci. ENS, 2012, vol. 45, pp. 637-680.
  • 29C. Landim, G. Valle.

    A microscopic model for Stefan's melting and freezing problem, in: Ann. Probab., 2006, vol. 34, no 2, pp. 779–803.

  • 30M. Rossi, R. Pastor-Satorras, A. Vespignani.

    Universality Class of Absorbing Phase Transitions with a Conserved Field, in: Phys. Rev. Lett., 2000, vol. 85, no 1803.
  • 31H. Spohn.

    Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains, in: Journal of Statistical Physics, Mar 2014, vol. 154, no 5, pp. 1191–1227.

  • 32H. Spohn.

    The Kardar-Parisi-Zhang equation – a statistical physics perspective, in: Arxiv preprint 1601.00499, 01 2016.
  • 33D. Wei.

    Micromagnetics and Recording Materials, Springer–Verlag Berlin Heidelberg, 2012, http://dx.doi.org/10.1007/978-3-642-28577-6.

  • 34S. Zhang, A. A. Baker, S. Komineas, T. Hesjedal.

    Topological computation based on direct magnetic logic communication, in: Scientific Reports, 2015, vol. 5.