FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies



Bibliography

Major publications by the team in recent years Publications of the year

Doctoral Dissertations and Habilitation Theses

  • 3G. Dujardin.

    Contribution à l'analyse numérique de problèmes d'évolution : comportements asymptotiques et applications à l'équation de Schrödinger, Universite de Lille, November 2018, Habilitation à diriger des recherches.

    https://hal.archives-ouvertes.fr/tel-01950160

Articles in International Peer-Reviewed Journals

  • 4C. Beltrán, A. Hardy.

    Energy of the Coulomb Gas on the Sphere at Low Temperature, in: Archive for Rational Mechanics and Analysis, October 2018. [ DOI : 10.1007/s00205-018-1316-3 ]

    https://hal.archives-ouvertes.fr/hal-01890125
  • 5C. Bernardin, P. Gonçalves, M. Jara, M. Simon.

    Interpolation process between standard diffusion and fractional diffusion, in: Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2018.

    https://hal.archives-ouvertes.fr/hal-01348503
  • 6C. Bernardin, P. Gonçalves, M. Jara, M. Simon.

    Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence, in: Communications in Mathematical Physics, 2018.

    https://hal.archives-ouvertes.fr/hal-01491433
  • 7D. Chafai, A. Hardy, M. Maïda.

    Concentration for Coulomb gases and Coulomb transport inequalities, in: Journal of Functional Analysis, September 2018, vol. 275, no 16, pp. 1447-1483, https://arxiv.org/abs/1610.00980. [ DOI : 10.1016/j.jfa.2018.06.004 ]

    https://hal.archives-ouvertes.fr/hal-01374624
  • 8S. De Bièvre, T. Goudon, A. Vavasseur.

    Stability analysis of a Vlasov-Wave system describing particles interacting with their environment, in: Journal of Differential Equations, June 2018, vol. 264, no 12, pp. 7069-7093.

    https://hal.inria.fr/hal-01581676
  • 9S. De Bièvre, S. Rota Nodari.

    Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups, in: Archive for Rational Mechanics and Analysis, 2018, https://arxiv.org/abs/1605.02523. [ DOI : 10.1007/s00205-018-1278-5 ]

    https://hal.archives-ouvertes.fr/hal-01312534
  • 10A. De Laire, P. Gravejat.

    The Sine-Gordon regime of the Landau-Lifshitz equation with a strong easy-plane anisotropy, in: Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, November 2018, vol. 35, no 7, pp. 1885-1945.

    https://hal.archives-ouvertes.fr/hal-01518483
  • 11A. Hardy.

    Polynomial Ensembles and Recurrence Coefficients, in: Constructive Approximation, August 2018, vol. 48, no 1, pp. 137 - 162. [ DOI : 10.1007/s00365-017-9413-3 ]

    https://hal.archives-ouvertes.fr/hal-01890050
  • 12T. Komorowski, S. Olla, M. Simon.

    Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities, in: Kinetic and Related Models , 2018, vol. 11, no 3, pp. 615-645.

    https://hal.archives-ouvertes.fr/hal-01358979

Other Publications

References in notes
  • 24G. Basile, C. Bernardin, S. Olla.

    Thermal conductivity for a momentum conservative model, in: Comm. Math. Phys., 2009, vol. 287, no 1, pp. 67–98.

    http://dx.doi.org/10.1007/s00220-008-0662-7
  • 25I. Bejenaru, A. D. Ionescu, C. E. Kenig, D. Tataru.

    Global Schrödinger maps in dimensions d2: small data in the critical Sobolev spaces, in: Annals of Mathematics, 2011, pp. 1443–1506.
  • 26P. Gonçalves, C. Landim, C. Toninelli.

    Hydrodynamic limit for a particle system with degenerate rates, in: Ann. Inst. Henri Poincaré Probab. Stat., 2009, vol. 45, no 4, pp. 887–909.

    https://doi.org/10.1214/09-AIHP210
  • 27J. Gravner, J. Quastel.

    Internal DLA and the Stefan problem, in: Ann. Probab., 2000, vol. 28, no 4, pp. 1528–1562.

    https://doi.org/10.1214/aop/1019160497
  • 28R. L. Jerrard, D. Smets.

    On Schrödinger maps from T1 to S2, in: Ann. Sci. ENS, 2012, vol. 45, pp. 637-680.
  • 29C. Landim, G. Valle.

    A microscopic model for Stefan's melting and freezing problem, in: Ann. Probab., 2006, vol. 34, no 2, pp. 779–803.

    https://doi.org/10.1214/009117905000000701
  • 30M. Rossi, R. Pastor-Satorras, A. Vespignani.

    Universality Class of Absorbing Phase Transitions with a Conserved Field, in: Phys. Rev. Lett., 2000, vol. 85, no 1803.
  • 31H. Spohn.

    Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains, in: Journal of Statistical Physics, Mar 2014, vol. 154, no 5, pp. 1191–1227.

    https://doi.org/10.1007/s10955-014-0933-y
  • 32H. Spohn.

    The Kardar-Parisi-Zhang equation – a statistical physics perspective, in: Arxiv preprint 1601.00499, 01 2016.
  • 33D. Wei.

    Micromagnetics and Recording Materials, Springer–Verlag Berlin Heidelberg, 2012, http://dx.doi.org/10.1007/978-3-642-28577-6.

    https://doi.org/10.1007/978-3-642-28577-6
  • 34S. Zhang, A. A. Baker, S. Komineas, T. Hesjedal.

    Topological computation based on direct magnetic logic communication, in: Scientific Reports, 2015, vol. 5.

    http://dx.doi.org/10.1038/srep15773