FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies


Bibliography

Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.
  • 2S. Delcourte, L. Fézoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.
  • 3V. Dolean, H. Fahs, F. Loula, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.
  • 4C. Durochat, S. Lanteri, C. Scheid.

    High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704.
  • 5M. El Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251.
  • 6H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
  • 7H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
  • 8H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.
  • 9L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.
  • 10S. Lanteri, C. Scheid.

    Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459.
  • 11L. Li, S. Lanteri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581.
  • 12L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218.
  • 13L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246.
  • 14F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.

    A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334.
  • 15J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.

    Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.

    http://hal.inria.fr/hal-00819758
Publications of the year

Articles in International Peer-Reviewed Journals

  • 16M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Hybridizable discontinuous Galerkin method for the two-dimensional frequency-domain elastic wave equations, in: Geophysical Journal International, April 2018, vol. 213, no 1, pp. 637–659. [ DOI : 10.1093/gji/ggx533 ]

    https://hal.inria.fr/hal-01656440
  • 17A. Christophe, S. Descombes, S. Lanteri.

    An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations, in: Applied Mathematics and Computation, February 2018, vol. 319, pp. 395 - 408. [ DOI : 10.1016/j.amc.2017.04.023 ]

    https://hal.inria.fr/hal-01674044
  • 18S. Lanteri, D. Paredes, C. Scheid, F. Valentin.

    The Multiscale Hybrid-Mixed method for the Maxwell Equations in Heterogeneous Media, in: Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, October 2018, vol. 16, no 4, pp. 1648-1683.

    https://hal.inria.fr/hal-01973538
  • 19L. Li, T.-Z. Huang, S. Lanteri, B. Li.

    A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation, in: IEEE Transactions on Antennas and Propagation, January 2018, vol. 66, no 1, pp. 242 - 254. [ DOI : 10.1109/TAP.2017.2768562 ]

    https://hal.inria.fr/hal-01674360
  • 20K. Li, T.-Z. Huang, L. Li, S. Lanteri.

    A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media, in: Journal of Computational and Applied Mathematics, July 2018, vol. 336, pp. 249-266.

    https://hal.inria.fr/hal-01973540
  • 21N. Schmitt, C. Scheid, J. Viquerat, S. Lanteri.

    Simulation of three-dimensional nanoscale light interaction with spatially dispersive metals using a high order curvilinear DGTD method, in: Journal of Computational Physics, November 2018, vol. 373, pp. 210-229.

    https://hal.inria.fr/hal-01973550
  • 22J. Viquerat.

    Fitting experimental dispersion data with a simulated annealing method for nano-optics applications, in: Journal of Nanophotonics, September 2018.

    https://hal.archives-ouvertes.fr/hal-01930876

International Conferences with Proceedings

  • 23S. Lanteri, A. Gobé, U. Aeberhard, K. Bittkau.

    Rigorous modeling of light absorption in nanostructured materials using a parallel high order finite element time-domain technique, in: Computational Optics 2018, Francfort, Germany, May 2018.

    https://hal.inria.fr/hal-01962363

Conferences without Proceedings

  • 24A. Gobé, S. Lanteri, R. Léger, C. Scheid, F. Valentin.

    An upscaled DGTD method for time-domain electromagnetics, in: Progress In Electromagnetics Research Symposium - PIERS 2018, Toyama, Japan, August 2018.

    https://hal.inria.fr/hal-01974085
  • 25M. Javadzadeh Moghtader, S. Lanteri, A. Gobé, L. Li.

    HDG Method for the 3d Frequency-Domain Maxwell's Equations With Application to Nanophotonics, in: 6th European Seminar on Computing, Pilsen, Czech Republic, June 2018.

    https://hal.inria.fr/hal-01951465
  • 26N. Schmitt, J. Viquerat, S. Lanteri, C. Scheid.

    High order curvilinear DGTD methods for local and nonlocal plasmonics, in: Progress In Electromagnetics Research Symposium - PIERS 2018, Toyama, Japan, August 2018.

    https://hal.inria.fr/hal-01974072

Internal Reports

  • 27E. Agullo, L. Giraud, S. Lanteri, G. Marait, A.-C. Orgerie, L. Poirel.

    Energy analysis of a solver stack for frequency-domain electromagnetics, Inria Bordeaux Sud-Ouest, December 2018, no RR-9240.

    https://hal.inria.fr/hal-01962629
  • 28L. F. Fezoui, S. Lanteri.

    Finite volume scheme for the 1D Maxwell equations with GSTC conditions, Inria, March 2018, no RR-9156, pp. 1-14.

    https://hal.inria.fr/hal-01720293

Other Publications

  • 29T. Chaumont-Frelet, S. Descombes, S. Lanteri, F. Valentin.

    A multiscale hybrid mixed method for time-harmonic maxwell's equations in two dimensions, May 2018, working paper or preprint.

    https://hal.inria.fr/hal-01700117
  • 30D. Chiron, C. Scheid.

    Multiple branches of travelling waves for the Gross-Pitaevskii equation, February 2018, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01525255
  • 31G. Nehmetallah, S. Lanteri, S. Descombes, A. Christophe.

    An explicit hybridizable discontinuous Galerkin method for the 3D time-domain Maxwell equations, December 2018, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01955032
  • 32J. Viquerat.

    Efficient time-domain numerical analysis of waveguides with tailored wideband pulses, November 2018, working paper or preprint.

    https://hal.archives-ouvertes.fr/hal-01930877
  • 33W. da Silva Pereira, C. Scheid, F. Valentin.

    The MHM method for the second-order elastodynamic model, July 2018, working paper or preprint.

    https://hal.inria.fr/hal-01840081
References in notes
  • 34B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 35B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 36C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 37K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 38K. Busch, M. König, J. Niegemann.

    Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
  • 39B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
  • 40A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.

    Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
  • 41J. S. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 42J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 43X. Ji, W. Cai, P. Zhang.

    High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
  • 44J. Niegemann, M. König, K. Stannigel, K. Busch.

    Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
  • 45A. Taflove, S. Hagness.

    Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
  • 46J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
  • 47K. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan.

    Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings, in: Nano. Lett., 2012, vol. 12, pp. 1616-1619. [ DOI : 10.1021/nl204550q ]
  • 48K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
  • 49Y. Zheng, B. Kiraly, P. Weiss, T. Huang.

    Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.