Bibliography
Major publications by the team in recent years
-
1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.
3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560. -
2S. Delcourte, L. Fézoui, N. Glinsky-Olivier.
A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89. -
3V. Dolean, H. Fahs, F. Loula, S. Lanteri.
Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526. -
4C. Durochat, S. Lanteri, C. Scheid.
High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704. -
5M. El Bouajaji, S. Lanteri.
High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251. -
6H. Fahs.
Development of a -like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216. -
7H. Fahs.
High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300. -
8H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.
Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678. -
9L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.
Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176. -
10S. Lanteri, C. Scheid.
Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459. -
11L. Li, S. Lanteri, R. Perrussel.
A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581. -
12L. Moya, S. Descombes, S. Lanteri.
Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218. -
13L. Moya.
Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246. -
14F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.
A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334. -
15J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.
Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.
http://hal.inria.fr/hal-00819758
Articles in International Peer-Reviewed Journals
-
16M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.
Hybridizable discontinuous Galerkin method for the two-dimensional frequency-domain elastic wave equations, in: Geophysical Journal International, April 2018, vol. 213, no 1, pp. 637–659. [ DOI : 10.1093/gji/ggx533 ]
https://hal.inria.fr/hal-01656440 -
17A. Christophe, S. Descombes, S. Lanteri.
An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations, in: Applied Mathematics and Computation, February 2018, vol. 319, pp. 395 - 408. [ DOI : 10.1016/j.amc.2017.04.023 ]
https://hal.inria.fr/hal-01674044 -
18S. Lanteri, D. Paredes, C. Scheid, F. Valentin.
The Multiscale Hybrid-Mixed method for the Maxwell Equations in Heterogeneous Media, in: Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, October 2018, vol. 16, no 4, pp. 1648-1683.
https://hal.inria.fr/hal-01973538 -
19L. Li, T.-Z. Huang, S. Lanteri, B. Li.
A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation, in: IEEE Transactions on Antennas and Propagation, January 2018, vol. 66, no 1, pp. 242 - 254. [ DOI : 10.1109/TAP.2017.2768562 ]
https://hal.inria.fr/hal-01674360 -
20K. Li, T.-Z. Huang, L. Li, S. Lanteri.
A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media, in: Journal of Computational and Applied Mathematics, July 2018, vol. 336, pp. 249-266.
https://hal.inria.fr/hal-01973540 -
21N. Schmitt, C. Scheid, J. Viquerat, S. Lanteri.
Simulation of three-dimensional nanoscale light interaction with spatially dispersive metals using a high order curvilinear DGTD method, in: Journal of Computational Physics, November 2018, vol. 373, pp. 210-229.
https://hal.inria.fr/hal-01973550 -
22J. Viquerat.
Fitting experimental dispersion data with a simulated annealing method for nano-optics applications, in: Journal of Nanophotonics, September 2018.
https://hal.archives-ouvertes.fr/hal-01930876
International Conferences with Proceedings
-
23S. Lanteri, A. Gobé, U. Aeberhard, K. Bittkau.
Rigorous modeling of light absorption in nanostructured materials using a parallel high order finite element time-domain technique, in: Computational Optics 2018, Francfort, Germany, May 2018.
https://hal.inria.fr/hal-01962363
Conferences without Proceedings
-
24A. Gobé, S. Lanteri, R. Léger, C. Scheid, F. Valentin.
An upscaled DGTD method for time-domain electromagnetics, in: Progress In Electromagnetics Research Symposium - PIERS 2018, Toyama, Japan, August 2018.
https://hal.inria.fr/hal-01974085 -
25M. Javadzadeh Moghtader, S. Lanteri, A. Gobé, L. Li.
HDG Method for the 3d Frequency-Domain Maxwell's Equations With Application to Nanophotonics, in: 6th European Seminar on Computing, Pilsen, Czech Republic, June 2018.
https://hal.inria.fr/hal-01951465 -
26N. Schmitt, J. Viquerat, S. Lanteri, C. Scheid.
High order curvilinear DGTD methods for local and nonlocal plasmonics, in: Progress In Electromagnetics Research Symposium - PIERS 2018, Toyama, Japan, August 2018.
https://hal.inria.fr/hal-01974072
Internal Reports
-
27E. Agullo, L. Giraud, S. Lanteri, G. Marait, A.-C. Orgerie, L. Poirel.
Energy analysis of a solver stack for frequency-domain electromagnetics, Inria Bordeaux Sud-Ouest, December 2018, no RR-9240.
https://hal.inria.fr/hal-01962629 -
28L. F. Fezoui, S. Lanteri.
Finite volume scheme for the 1D Maxwell equations with GSTC conditions, Inria, March 2018, no RR-9156, pp. 1-14.
https://hal.inria.fr/hal-01720293
Other Publications
-
29T. Chaumont-Frelet, S. Descombes, S. Lanteri, F. Valentin.
A multiscale hybrid mixed method for time-harmonic maxwell's equations in two dimensions, May 2018, working paper or preprint.
https://hal.inria.fr/hal-01700117 -
30D. Chiron, C. Scheid.
Multiple branches of travelling waves for the Gross-Pitaevskii equation, February 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01525255 -
31G. Nehmetallah, S. Lanteri, S. Descombes, A. Christophe.
An explicit hybridizable discontinuous Galerkin method for the 3D time-domain Maxwell equations, December 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01955032 -
32J. Viquerat.
Efficient time-domain numerical analysis of waveguides with tailored wideband pulses, November 2018, working paper or preprint.
https://hal.archives-ouvertes.fr/hal-01930877 -
33W. da Silva Pereira, C. Scheid, F. Valentin.
The MHM method for the second-order elastodynamic model, July 2018, working paper or preprint.
https://hal.inria.fr/hal-01840081
-
34B. Cockburn, G. Karniadakis, C. Shu (editors)
Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11. -
35B. Cockburn, C. Shu (editors)
Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23. -
36C. Dawson (editor)
Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195. -
37K. Aki, P. Richards.
Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002. -
38K. Busch, M. König, J. Niegemann.
Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37. -
39B. Cockburn, J. Gopalakrishnan, R. Lazarov.
Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365. -
40A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.
Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496. -
41J. S. Hesthaven, T. Warburton.
Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007. -
42J. Jackson.
Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998. -
43X. Ji, W. Cai, P. Zhang.
High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325. -
44J. Niegemann, M. König, K. Stannigel, K. Busch.
Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11. -
45A. Taflove, S. Hagness.
Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005. -
46J. Virieux.
P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901. -
47K. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan.
Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings, in: Nano. Lett., 2012, vol. 12, pp. 1616-1619. [ DOI : 10.1021/nl204550q ] -
48K. Yee.
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307. -
49Y. Zheng, B. Kiraly, P. Weiss, T. Huang.
Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.