Major publications by the team in recent years
  • 1M. Benjemaa, N. Glinsky-Olivier, V. Cruz-Atienza, J. Virieux.

    3D dynamic rupture simulations by a finite volume method, in: Geophys. J. Int., 2009, vol. 178, pp. 541–560.
  • 2S. Delcourte, L. Fézoui, N. Glinsky-Olivier.

    A high-order discontinuous Galerkin method for the seismic wave propagation, in: ESAIM: Proc., 2009, vol. 27, pp. 70–89.
  • 3V. Dolean, H. Fahs, F. Loula, S. Lanteri.

    Locally implicit discontinuous Galerkin method for time domain electromagnetics, in: J. Comput. Phys., 2010, vol. 229, no 2, pp. 512–526.
  • 4C. Durochat, S. Lanteri, C. Scheid.

    High order non-conforming multi-element discontinuous Galerkin method for time domain electromagnetics, in: Appl. Math. Comput., 2013, vol. 224, pp. 681–704.
  • 5M. El Bouajaji, S. Lanteri.

    High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations, in: Appl. Math. Comput., 2013, vol. 219, no 13, pp. 7241–7251.
  • 6H. Fahs.

    Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, in: Int. J. Numer. Anal. Mod., 2009, vol. 6, no 2, pp. 193–216.
  • 7H. Fahs.

    High-order Leap-Frog based biscontinuous Galerkin bethod for the time-domain Maxwell equations on non-conforming simplicial meshes, in: Numer. Math. Theor. Meth. Appl., 2009, vol. 2, no 3, pp. 275–300.
  • 8H. Fahs, A. Hadjem, S. Lanteri, J. Wiart, M. Wong.

    Calculation of the SAR induced in head tissues using a high order DGTD method and triangulated geometrical models, in: IEEE Trans. Ant. Propag., 2011, vol. 59, no 12, pp. 4669–4678.
  • 9L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno.

    Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, in: ESAIM: Math. Model. Num. Anal., 2005, vol. 39, no 6, pp. 1149–1176.
  • 10S. Lanteri, C. Scheid.

    Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, in: IMA J. Numer. Anal., 2013, vol. 33, no 2, pp. 432-459.
  • 11L. Li, S. Lanteri, R. Perrussel.

    A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equations, in: J. Comput. Phys., 2014, vol. 256, pp. 563–581.
  • 12L. Moya, S. Descombes, S. Lanteri.

    Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, in: J. Sci. Comp., 2013, vol. 56, no 1, pp. 190–218.
  • 13L. Moya.

    Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations, in: ESAIM: Mathematical Modelling and Numerical Analysis, 2012, vol. 46, pp. 1225–1246.
  • 14F. Peyrusse, N. Glinsky-Olivier, C. Gélis, S. Lanteri.

    A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media - verification and validation in the Nice basin, in: Geophys. J. Int., 2014, vol. 199, no 1, pp. 315-334.
  • 15J. Viquerat, M. Klemm, S. Lanteri, C. Scheid.

    Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, Inria, May 2013, no RR-8298, 79 p.

Publications of the year

Articles in International Peer-Reviewed Journals

  • 16M. Bonnasse-Gahot, H. Calandra, J. Diaz, S. Lanteri.

    Hybridizable discontinuous Galerkin method for the two-dimensional frequency-domain elastic wave equations, in: Geophysical Journal International, April 2018, vol. 213, no 1, pp. 637–659. [ DOI : 10.1093/gji/ggx533 ]

  • 17A. Christophe, S. Descombes, S. Lanteri.

    An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations, in: Applied Mathematics and Computation, February 2018, vol. 319, pp. 395 - 408. [ DOI : 10.1016/j.amc.2017.04.023 ]

  • 18S. Lanteri, D. Paredes, C. Scheid, F. Valentin.

    The Multiscale Hybrid-Mixed method for the Maxwell Equations in Heterogeneous Media, in: Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, October 2018, vol. 16, no 4, pp. 1648-1683.

  • 19L. Li, T.-Z. Huang, S. Lanteri, B. Li.

    A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation, in: IEEE Transactions on Antennas and Propagation, January 2018, vol. 66, no 1, pp. 242 - 254. [ DOI : 10.1109/TAP.2017.2768562 ]

  • 20K. Li, T.-Z. Huang, L. Li, S. Lanteri.

    A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media, in: Journal of Computational and Applied Mathematics, July 2018, vol. 336, pp. 249-266.

  • 21N. Schmitt, C. Scheid, J. Viquerat, S. Lanteri.

    Simulation of three-dimensional nanoscale light interaction with spatially dispersive metals using a high order curvilinear DGTD method, in: Journal of Computational Physics, November 2018, vol. 373, pp. 210-229.

  • 22J. Viquerat.

    Fitting experimental dispersion data with a simulated annealing method for nano-optics applications, in: Journal of Nanophotonics, September 2018.


International Conferences with Proceedings

  • 23S. Lanteri, A. Gobé, U. Aeberhard, K. Bittkau.

    Rigorous modeling of light absorption in nanostructured materials using a parallel high order finite element time-domain technique, in: Computational Optics 2018, Francfort, Germany, May 2018.


Conferences without Proceedings

  • 24A. Gobé, S. Lanteri, R. Léger, C. Scheid, F. Valentin.

    An upscaled DGTD method for time-domain electromagnetics, in: Progress In Electromagnetics Research Symposium - PIERS 2018, Toyama, Japan, August 2018.

  • 25M. Javadzadeh Moghtader, S. Lanteri, A. Gobé, L. Li.

    HDG Method for the 3d Frequency-Domain Maxwell's Equations With Application to Nanophotonics, in: 6th European Seminar on Computing, Pilsen, Czech Republic, June 2018.

  • 26N. Schmitt, J. Viquerat, S. Lanteri, C. Scheid.

    High order curvilinear DGTD methods for local and nonlocal plasmonics, in: Progress In Electromagnetics Research Symposium - PIERS 2018, Toyama, Japan, August 2018.


Internal Reports

  • 27E. Agullo, L. Giraud, S. Lanteri, G. Marait, A.-C. Orgerie, L. Poirel.

    Energy analysis of a solver stack for frequency-domain electromagnetics, Inria Bordeaux Sud-Ouest, December 2018, no RR-9240.

  • 28L. F. Fezoui, S. Lanteri.

    Finite volume scheme for the 1D Maxwell equations with GSTC conditions, Inria, March 2018, no RR-9156, pp. 1-14.


Other Publications

  • 29T. Chaumont-Frelet, S. Descombes, S. Lanteri, F. Valentin.

    A multiscale hybrid mixed method for time-harmonic maxwell's equations in two dimensions, May 2018, working paper or preprint.

  • 30D. Chiron, C. Scheid.

    Multiple branches of travelling waves for the Gross-Pitaevskii equation, February 2018, working paper or preprint.

  • 31G. Nehmetallah, S. Lanteri, S. Descombes, A. Christophe.

    An explicit hybridizable discontinuous Galerkin method for the 3D time-domain Maxwell equations, December 2018, working paper or preprint.

  • 32J. Viquerat.

    Efficient time-domain numerical analysis of waveguides with tailored wideband pulses, November 2018, working paper or preprint.

  • 33W. da Silva Pereira, C. Scheid, F. Valentin.

    The MHM method for the second-order elastodynamic model, July 2018, working paper or preprint.

References in notes
  • 34B. Cockburn, G. Karniadakis, C. Shu (editors)

    Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 2000, vol. 11.
  • 35B. Cockburn, C. Shu (editors)

    Special issue on discontinuous Galerkin methods, J. Sci. Comput., Springer, 2005, vol. 22-23.
  • 36C. Dawson (editor)

    Special issue on discontinuous Galerkin methods, Comput. Meth. App. Mech. Engng., Elsevier, 2006, vol. 195.
  • 37K. Aki, P. Richards.

    Quantitative seismology, University Science Books, Sausalito, CA, USA, 2002.
  • 38K. Busch, M. König, J. Niegemann.

    Discontinuous Galerkin methods in nanophotonics, in: Laser and Photonics Reviews, 2011, vol. 5, pp. 1–37.
  • 39B. Cockburn, J. Gopalakrishnan, R. Lazarov.

    Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, in: SIAM J. Numer. Anal., 2009, vol. 47, no 2, pp. 1319–1365.
  • 40A. Csaki, T. Schneider, J. Wirth, N. Jahr, A. Steinbrück, O. Stranik, F. Garwe, R. Müller, W. Fritzsche.

    Molecular plasmonics: light meets molecules at the nanosacle, in: Phil. Trans. R. Soc. A, 2011, vol. 369, pp. 3483–3496.
  • 41J. S. Hesthaven, T. Warburton.

    Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Springer Texts in Applied Mathematics, Springer Verlag, 2007.
  • 42J. Jackson.

    Classical Electrodynamics, Third edition, John Wiley and Sons, INC, 1998.
  • 43X. Ji, W. Cai, P. Zhang.

    High-order DGTD method for dispersive Maxwell's equations and modelling of silver nanowire coupling, in: Int. J. Numer. Meth. Engng., 2007, vol. 69, pp. 308–325.
  • 44J. Niegemann, M. König, K. Stannigel, K. Busch.

    Higher-order time-domain methods for the analysis of nano-photonic systems, in: Photonics Nanostruct., 2009, vol. 7, pp. 2–11.
  • 45A. Taflove, S. Hagness.

    Computational electrodynamics: the finite-difference time-domain method (3rd edition), Artech House, 2005.
  • 46J. Virieux.

    P-SV wave propagation in heterogeneous media: velocity-stress finite difference method, in: Geophysics, 1986, vol. 51, pp. 889–901.
  • 47K. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan.

    Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings, in: Nano. Lett., 2012, vol. 12, pp. 1616-1619. [ DOI : 10.1021/nl204550q ]
  • 48K. Yee.

    Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, in: IEEE Trans. Antennas and Propagation, 1966, vol. 14, no 3, pp. 302–307.
  • 49Y. Zheng, B. Kiraly, P. Weiss, T. Huang.

    Molecular plasmonics for biology and nanomedicine, in: Nanomedicine, 2012, vol. 7, no 5, pp. 751–770.