FR

EN

Homepage Inria website
  • Inria login
  • The Inria's Research Teams produce an annual Activity Report presenting their activities and their results of the year. These reports include the team members, the scientific program, the software developed by the team and the new results of the year. The report also describes the grants, contracts and the activities of dissemination and teaching. Finally, the report gives the list of publications of the year.

  • Legal notice
  • Cookie management
  • Personal data
  • Cookies


Section: Research Program

Basic computable objects and algorithms

The development of basic computable objects is somehow on demand and depends on all the other directions. However, some critical computations are already known to be bottlenecks and are sources of constant efforts.

Computations with algebraic numbers appear in almost all our activities: when working with number fields in our work in algorithmic number theory as well as in all the computations that involve the use of solutions of zero-dimensional systems of polynomial equations. Among the identified problems: finding good representations for single number fields (optimizing the size and degree of the defining polynomials), finding good representations for towers or products of number fields (typically working with a tower or finding a unique good extension), efficiently computing in practice with number fields (using certified approximation vs working with the formal description based on polynomial arithmetics). Strong efforts are currently done in the understanding of the various strategies by means of tight theoretical complexity studies [43], [72], [35] and many other efforts will be required to find the right representation for the right problem in practice. For example, for isolating critical points of plane algebraic curves, it is still unclear (at least the theoretical complexity cannot help) that an intermediate formal parameterization is more efficient than a triangular decomposition of the system and it is still unclear that these intermediate computations could be dominated in time by the certified final approximation of the roots.